Determining allowable parametric uncertainty in an uncommon quadrotor model for closed loop stability

Determining allowable parametric uncertainty in an uncommon quadrotor model for closed loop stability

In this article, control oriented uncertainty modeling of an uncommon quadrotor in hover is discussed. This quadrotor consists of two counter-rotating big rotors on longitudinal axis and two counter-rotating small tilt rotors on lateral axis. Firstly, approximate linear model of this vehicle around hover is obtained by using Newton–Euler formulation. Secondly, specific uncertainty is assigned to each parameter. Resulting uncertain model is converted into a linear fractional transformation framework for robustness analysis. Next, the most critical uncertain parameters in terms of robust stability in a proposed quadrotor model are investigated using µ sensitivities. Finally, skewed-µ analysis determines maximum possible uncertainty bounds for model parameters that are difficult to identify accurately.

___

  • [1] Mahony R, Kumar V, Corke P. Multirotor aerial vehicles: Modeling, estimation, and control of quadrotor. IEEE Robotics and Automation magazine 2012; 19 (3): 20-32. doi:10.1109/MRA.2012.2206474
  • [2] Sani MF, Shoaran M, Karimian G. Automatic landing of a low-cost quadrotor using monocular vision and Kalman filter in GPS-denied environment. Turkish Journal of Electrical Engineering & Computer Sciences 2019; 27 (3): 1821-1838. doi:10.3906/elk-1809-204
  • [3] Mulgaonkar Y, Whitzer M, Morgan B, Kroninger CM, Harrington A et al. Power and weight considerations in small, agile quadrotors. In: SPIE Defense + Security; Maryland, USA; 2014.
  • [4] Driessens S, Pounds P. The triangular quadrotor: a more efficient quadrotor configuration. IEEE Transactions on Robotics 2015; 31 (6): 1517-1526. doi:10.1109/TRO.2015.2479877
  • [5] Hoffmann GM, Huang H, Waslander SL, Tomlin CJ. Quadrotor helicopter flight dynamics and control: Theory and experiment. In: AIAA guidance, navigation and control conference and exhibit; South Carolina, USA; 2007.
  • [6] Kim T, Hong S. Control system design and experimental validation of hybrid multicopter for endurance enhancement. Asia-pacific Journal of Modeling and Simulation for Mechanical System Design and Analysis (AJMSM) 2017; 2 (1) 15-20. doi:10.21742/ajmsm.2017.2.1.03
  • [7] Pang T, Peng K, Lin F, Chen BM. Towards long-endurance flight: Design and implementation of a variable-pitch gasoline-engine quadrotor. In: IEEE International Conference on Control and Automation (ICCA); Nepal; 2016.
  • [8] Haus T, Orsag M, Bogdan S. Design considerations for a large quadrotor with moving mass control. In: International Conference on Unmanned Aircraft Systems (ICUAS); Arlington, USA; 2016.
  • [9] Yeair [online]. Website https://yeair.de/ [accessed 14 05 2021].
  • [10] Raffo GV, Ortega MG, Rubio FR. An integral predictive/nonlinear H∞ control structure for a quadrotor helicopter. Automatica 2010; 46 (1): 29-39. doi:10.1016/j.automatica.2009.10.018
  • [11] Doukhi O, Fayjie AR, Lee DJ. Intelligent controller design for quad-rotor stabilization in presence of parameter variations. Journal of Advanced Transportation 2017. doi:10.1155/2017/4683912
  • [12] Labbadi M, Cherkaoui M. Robust adaptive backstepping fast terminal sliding mode controller for uncertain quadrotor UAV. Aerospace Science and Technology 2019; 93. doi:10.1016/j.ast.2019.105306
  • [13] Qin Y, Xu W, Lee A, Zhang F. Gemini: A compact yet efficient bi-copter uav for indoor applications. IEEE Robotics and Automation Letters 2020; 5 (2): 3213-3220. doi:10.1109/LRA.2020.2974718
  • [14] Baskın M, Leblebicioğlu K. Combined system identification and robust control of a gimbal platform. Turkish Journal of Electrical Engineering & Computer Sciences 2021; 29 (4): 2247-2262. doi:10.3906/elk-2009-74
  • [15] Baskın M, Leblebicioğlu K. Robust control for line-of-sight stabilization of a two-axis gimbal system. Turkish Journal of Electrical Engineering & Computer Sciences 2017; 25 (5): 3839-3853. doi:10.3906/elk-1606-435
  • [16] Marcos A, Bates D, Postlethwaite I. Control oriented uncertainty modelling using µ sensitivities and skewed µ analysis tools. In: IEEE Conference on Decision and Control; Seville, Spain; 2005.
  • [17] Hespanha JP. Linear systems theory. New Jersey, USA: Princeton university press, 2009.
  • [18] Zhou K, Doyle JC, Glover K. Robust and optimal control. New Jersey, USA: Prentice hall, 1996.
  • [19] Lambrechts P, Terlouw J, Bennani S, Steinbuch M. Parametric uncertainty modeling using LFTs. In: American Control Conference; California, USA; 1993.
  • [20] Oomen T, Quist S, van Herpen R, Bosgra O. Identification and visualization of robust-control-relevant model sets with application to an industrial wafer stage. In: IEEE Conference on Decision and Control; USA; 2010.
  • [21] Oomen T, Steinbuch M. Model-based control for high-tech mechatronic systems. CRC Press, 2020.
  • [22] Roos C. Systems modeling, analysis and control (SMAC) toolbox: An insight into the robustness analysis library. In: IEEE Conference on Computer Aided Control System Design (CACSD); Hyderabad, India; 2013.
Turkish Journal of Electrical Engineering and Computer Sciences-Cover
  • ISSN: 1300-0632
  • Yayın Aralığı: Yılda 6 Sayı
  • Yayıncı: TÜBİTAK