Design and implementation of a digital MPPT controller for a photovoltaic panel

Design and implementation of a digital MPPT controller for a photovoltaic panel

This paper proposes a simplified design and hardware implementation of a digital maximum power point tracking (MPPT) controller for a photovoltaic (PV) panel using PIC microcontroller 16F877A embedded technology. The 3 most well-known algorithms, perturb & observe, hill-climbing, and incremental conductance, are considered and analyzed from a practical implementation point of view. The control board was developed using simple circuits and tested under resistive load conditions lower than the load of the maximum power point. The MPPT controller proved its effectiveness, providing maximum power to the load under changing weather conditions

___

  • [1] Mellit A, Massi P A. Performance prediction of 20kWp grid-connected photovoltaic plant at Trieste (Italy) using artificial neural network. Energ Convers Manage 2010; 51: 2431-2441.
  • [2] Parida B, Iniyan S, Goic R. A review of solar photovoltaic technologies. Renew Sust Energ Rev 2011; 15: 1625-1636.
  • [3] Mellit A, Kalogirou SA, Hontoria L, Shaari S. Artificial intelligence techniques for sizing photovoltaic systems: a review. Renew Sust Energ Rev 2009; 13: 406-419.
  • [4] Shraif MF. Optimisation et mesure de chaˆıne de conversion d’energie photovolta¨ıque en energie electrique. PhD, Paul Sabatier University, Toulouse, France, 2002 (in French).
  • [5] Orabi M, Hilmy F, Shawky A, Jaber AAQ, Hasaneen E, Gomaa E. On-chip integrated power management MPPT controller utilizing cell-level architecture for PV solar system. Sol Energy 2015; 117: 10-28.
  • [6] Sivakumar P, Abdullah AK, Yogeshraj K, Arutchelvi M. Analysis and enhancement of PV efficiency with incremental conductance MPPT technique under non-linear loading conditions. Renew Energ 2015; 81: 543-550.
  • [7] Subudhi B, Pradhan R. A comparative study on maximum power point tracking techniques for photovoltaic power systems. IEEE T Sust Energy 2013; 4: 89-98.
  • [8] Esram T, Chapman PL. Comparison of photovoltaic array maximum power point tracking techniques. IEEE T Energy Conver 2007; 22: 439-449.
  • [9] De Brito MAG, Galotto L, Sampaio LP, de Azevedo e Melo G. Evaluation of the main MPPT techniques for photovoltaic applications. IEEE T Ind Electron 2013; 60: 1156-1167.
  • [10] Learreta AB. R´ealisation de commandes MPPT num´eriques. Report. Tarragona, Spain: Rovira i Virgili University, 2006 (in Spanish).
  • [11] Sharaf Eldin SA, Abd-Elhady MS, Kandil HA. Feasibility of solar tracking systems for PV panels in hot and cold regions. Renew Energ 2016; 85: 228-233.
  • [12] Ingegnoli A, Iannopollo A. A maximum power point tracking algorithm for stand-alone photovoltaic systems controlled by low computational power devices. In: 15th IEEE 2010 Mediterranean Electro-Technical Conference; 26–28 April 2010; Valletta, Malta. New York, NY, USA: IEEE. pp. 1522-1527.
  • [13] Villalva MG, Gazoli JR, Ernesto RF. Comprehensive approach to modeling and simulation of photovoltaic arrays. IEEE T Power Electr 2009; 24: 1198-1208.
  • [14] Nema P, Nema RK, Rangnekar S. A current and future state of art development of hybrid energy system using wind and PV-solar. Renew Sust Energ Rev 2009; 13: 2096-2103.
  • [15] Garcia A, Balenzategui JL. Estimation of photovoltaic module yearly temperature and performance based on nominal operation cell temperature. Renew Energ 2004; 29: 1997-2010.
  • [16] Skoplaki E, Palyvos JA. On the temperature dependence of photovoltaic module electrical performance. Sol Energy 2009; 83: 614-624.
  • [17] B¨ucher K, Kleiss G, D¨atzner D. Photovoltaic modules in buildings: performance and safety. Renew Energ 1998; 15: 545-551.
  • [18] Cabal C. Optimisation ´energ´etique de l’´etage d’adaptation ´electronique d´edi´e `a la conversion photovolta¨ıque. PhD, Paul Sabatier III University, Toulouse, France, 2008 (in French).
  • [19] Hohm DP, Ropp ME. Comparative study of maximum power point tracking algorithms using an experimental programmable maximum power point tracking test bed. In: IEEE 2000 Photovoltaic Specialists Conference; 15–22 September 2000; Anchorage, AK, USA. New York, NY, USA: IEEE. pp. 1699-1702.
  • [20] Femia N, Petrone G, Spagnuolo G, Vitelli M. Optimization of perturb and observe maximum power point tracking method. IEEE T Power Electr 2005; 20: 963-973.
  • [21] Sera D, Kerekes T, Teodorescu R, Blaabjerg F. Improved MPPT algorithms for rapidly changing environmental conditions. In: Power Electronics and Motion Control Conference 2006; 30 August–1 September 2006; Portoroz, Slovenia. New York, NY, USA: IEEE. pp. 1614-1619.
  • [22] Onat N. Recent developments in maximum power point tracking technologies for photovoltaic systems. Int J Photoenergy 2010; 2010: 245316.
  • [23] Xiao W, Dunford WG. Evaluating maximum power point tracking performance by using artificial lights. In: IEEE 2004 Industrial Electronics Society; 2–6 November 2004; Busan, Korea. New York, NY, USA: IEEE. pp. 2883-2887.
  • [24] Shimizu TH, Kimura OG. A novel high performance utility interactive photovoltaic inverter system. IEEE T Ind Electron 2003; 18: 704-711.
  • [25] Nur AK, Chee WT. A comprehensive review of maximum power point tracking algorithms for photovoltaic system. Renew Sust Energ Rev 2014; 37: 585-598.
  • [26] Lee JH, Bae H, Cho BH. Advanced incremental conductance MPPT algorithm with a variable step size. In: Power Electronics and Motion Control Conference 2006; 30 August–1 September 2006; Portoroz, Slovenia. New York, NY, USA: IEEE. pp. 603-607.
  • [27] Kim TY, Ahn HG, Park SK, Lee YK. A novel maximum power point tracking control for photovoltaic power system under rapidly changing solar radiation. In: IEEE 2001 International Symposium on Industrial Electronics; 12–16 June 2001; Busan, Korea. New York, NY, USA: IEEE. pp. 1011-1014.
  • [28] Oi A. Design and simulation of photovoltaic water pumping system. MSc, California Polytechnic State University, San Luis Obispo, CA, USA, 2005.
  • [29] Pongratananukul N. Analysis and simulation tools for solar array power systems. PhD, University of Central Florida, Orlando FL, USA, 2005.
  • [30] Chun S, Kwasinski A. Modified Regula Falsi optimization method approach to digital maximum power point tracking for photovoltaic application. In: IEEE 2011 Applied Power Electronics Conference and Exposition; 6–11 March 2011; Fort Worth, TX, USA. New York, NY, USA: IEEE. pp. 280-286.
Turkish Journal of Electrical Engineering and Computer Sciences-Cover
  • ISSN: 1300-0632
  • Yayın Aralığı: Yılda 6 Sayı
  • Yayıncı: TÜBİTAK