Compact metal-plate slotted WLAN-WIMAX antenna design with USB Wi-Fi adapter application

Compact metal-plate slotted WLAN-WIMAX antenna design with USB Wi-Fi adapter application

In this study, a compact antenna design, which operates in the 2.4, 5.2, and 5.8 GHz (WLAN) and 3.5and 5.5 GHz (WiMAX) frequency bands, has been implemented to be compatible with the 802.11.ac/n standards. Theproposed metal antenna is made of a copper plate of thickness 0.5 mm with a compact overall physical size of 20 mm× 30 mm. Although it is low-profile, it can work with high efficiency because it has a cheap planar metal structureand it does not contain any expensive dielectric material. The antenna is investigated in terms of S parameters, inputimpedance, efficiency, surface current distributions, and radiation pattern. The implemented antenna has been used ina USB WiFi adapter design for a desktop computer as an indoor WLAN application. The protector outer jacket of theWiFi adapter has been designed using a 3D printer, and the adapter card and driver are acquired commercially. As aresult, the produced WiFi adapter has been realized in a size of approximately 60% smaller than the other modules usingcommercially available monopole antennas on the market. The WiFi adapter provides IEEE 802.11.n/g/b standards andsupports USB 2.0. It has been observed that the speed measurement tests have been performed successfully and thatthe download-link and upload-link can reach 600 Mbps data rates. In addition, BPSK, QPSK, and 16QAM with OFDMmodulation techniques are used.

___

  • [1] Li F, Ren LS, Zhao G, Jiao YC. Compact triple-band monopole antenna with C-shaped and S-shaped meander strips for WLAN/WiMAX applications. Progress in Electromagnetics Research 2010; 15: 107-116. doi: 10.2528/PIERL10052004
  • [2] Ojaroudi N, Mehranpour M, Ojaroudi S, Ojaroudi Y. Microstrip-fed monopole antenna with triple band performance for WLAN/WiMAX applications. Applied Computational Electromagnetics Society Journal 2014; 29 (3): 203-207.
  • [3] Secmen M. Multiband and wideband antennas for mobile communication systems. In: Maícas JP (editor). Recent Developments in Mobile Communications - A Multidisciplinary Approach. Rijeka, Croatia: IntechOpen, 2011, pp. 143-166. doi: 10.5772/25921
  • [4] Madany YM, Almahallawy AI, Elkamchouchi HM. Methodology of band rejection/addition for microstrip antennas design using slot line theory and current distribution analysis. In: IEEE 2014 LAPC Loughborough Antennas and Propagation Conference; Loughborough, UK; 2014. pp. 602-606. doi: 10.1109/LAPC.2014.6996464
  • [5] Ren W, Jiang C, Hu SW. An asymmetric coplanar strip-fed 7-shaped monopole antenna for miniaturized communication systems. Microwave and Optical Technology Letters 2016; 58 (7): 1566-1572. doi: 10.1002/mop.29858
  • [6] Sun L, Li Y, Zhang Z, Iskander MF. Low-cost compact circularly polarized dual-layer PIFA for active RFID reader. IEEE Transactions on Antennas and Propagation 2018; 67 (1): 681-686. doi: 10.1109/tap.2018.2880093
  • [7] Hong TC, Su SW, Chang FS. A compact, one-piece, metal-plate patch PIFA for 2.4-GHz WLAN operation. Microwave and Optical Technology Letters 2011; 53 (8): 1757-1761. doi: 10.1002/mop.26134
  • [8] Hong TC, Su SW. Novel, one-piece, metal-plate loop-like antenna with symmetrical structure for thin LCD TV applications in the 2.4/5.2/5.8 GHz WLAN bands. Microwave and Optical Technology Letters 2011; 53 (10): 2232- 2238. doi: 10.1002/mop.26259
  • [9] Chen L, Li Z, Zhang H, Zhang X, Wu X et al. A planar metal-plate monopole antenna for indoor DTV applications. Journal of Electromagnetic Waves and Applications 2012; 26 (11-12): 1538-1544. doi: 10.1080/09205071.2012.704505
  • [10] Su SW, Wong KL, Tang CL. Band-notched ultra-wideband planar-monopole antenna. Microwave and Optical Technology Letters 2005; 44 (3): 217-219. doi: 10.1002/mop.20592
  • [11] Wong KL, Lin CI, Wu TY, Lai JW. A planar DTV receiving antenna for laptop applications. Microwave and Optical Technology Letters 2004; 42 (6): 483-486. doi: 10.1002/mop.20344
  • [12] Wong KL, Wu CH, Su SW. Ultrawide-band square planar metal-plate monopole antenna with a trident-shaped feeding strip. IEEE Transactions on Antennas and Propagation 2005; 53 (4): 1262-1269. doi: 10.1109/tap.2005.844430
  • [13] Chang L, Zhang Z, Li Y, Feng Z. All-metal antenna array based on microstrip line structure. IEEE Transactions on Antennas and Propagation 2015; 64 (1): 351-355. doi: 10.1109/tap.2015.2500907
  • [14] Wang Z, Yang Z, Yin Y. A metallic patch antenna using a simple short probe for improving impedance match bandwidth. Applied Computational Electromagnetics Society Journal 2019; 34 (1): 115-120.
  • [15] Deen SZ, Badaway M, Malhat HA, Awadalla K. Circularly polarized plasma curl antenna for 2.45 GHz portable RFID reader. In: IEEE 2014 NRSC 31st National Radio Science Conference; Cairo, Egypt; 2014. pp. 1-8. doi: 10.1007/s11468-014-9715-2
  • [16] Wong KL, Su WC, Chang FS. Wideband internal folded planar monopole antenna for UMTS/WiMAX folder-type mobile phone. Microwave and Optical Technology Letters 2006; 48 (2): 324-327. doi: 10.1002/mop.21339
  • [17] Su SW. Integration of loop and slot antennas into one‐piece metal plate for concurrent 2.4- and 5-GHz wireless local area network operation. Microwave and Optical Technology Letters 2012; 54 (3): 815-820. doi: 10.1002/mop.26624
  • [18] Su SW. Two-patch-PIFA system with comparable polarization radiation for tablet‐computer applications with complete,metal back cover. Microwave and Optical Technology Letters 2013; 55 (12): 2815-2821. doi: 10.1002/mop.27996
  • [19] Su SW. Compact four-loop-antenna system for concurrent, 2.4- and 5-GHz WLAN operation. Microwave and Optical Technology Letters 2014; 56 (1): 208-215. doi: 10.1002/mop.28020
  • [20] Wong KL, Tseng TC, Teng PL. Low-profile ultra-wideband antenna for mobile phone applications. Microwave and Optical Technology Letters 2004; 43 (1): 7-9. doi: 10.1002/mop.20358
  • [21] Fang CY, Tung HC, Su SW, Wong KL. Narrow flat metal‐plate antenna for dual-band WLAN operation. Microwave and Optical Technology Letters 2003; 38 (5): 398-400. doi: 10.1002/mop.11072
  • [22] Su CM, Wong KL. Narrow flat-plate antenna for 2.4 GHz WLAN operation. Electronics Letters 2003; 39 (4): 344-345. doi: 10.1049/el:20030257
  • [23] Su CM, Chen WS, Wong KL. Compact dual-band metal-plate antenna for 2.4/5.2-GHz WLAN operation. Microwave and Optical Technology Letters 2003; 38 (2): 113-115. doi: 10.1002/mop.10987
  • [24] Chou JH, Su SW. Cost-effective metal-plate shorted dipole antenna with wide bandwidth for WLAN/WiMAX applications. Microwave and Optical Technology Letters 2007; 49 (12): 3044-3046. doi: 10.1002/mop.22911
  • [25] Su SW, Chou JH, Liu YT. A one-piece flat-plate dipole antenna for dual-band WLAN operation. Microwave and Optical Technology Letters 2008; 50 (3): 678-680. doi: 10.1002/mop.23179
  • [26] Su SW, Chou JH. Compact coaxial-line-fed flat-plate dipole antenna for WLAN applications. Microwave and Optical Technology Letters 2008; 50 (2): 420-422. doi: 10.1002/mop.23116
  • [27] Su SW, Chou JH. Low-cost flat metal‐plate dipole antenna for 2.4/5-GHz WLAN operation. Microwave and Optical Technology Letters 2008; 50 (6): 1686-1687. doi: 10.1002/mop.23461
  • [28] Lee CT, Su SW, Chang FS. A compact, planar plate-type antenna for 2.4/5.2/5.8-GHz tri-band WLAN operation. Progress In Electromagnetics Research 2011; 26: 125-134. doi: 10.2528/PIERL11073004
  • [29] Su SW. One-piece, flat-plate, coupled-fed shorted monopole for 2.4-GHz wireless local area network operation. Microwave and Optical Technology Letters 2012; 54 (4): 936-940. doi: 10.1002/mop.26681
  • [30] Mondal S, Sarkar P. Design of an extremely wideband planar elliptical metal antenna. IEEE Antennas and Wireless Propagation Letters 2013; 12: 1508-1511. doi: 10.1109/lawp.2013.2288988
  • [31] Mondal S, Sarkar P. Design of an ultrawideband conformal metal antenna. Microwave and Optical Technology Letters 2014; 56 (2): 430-434. doi: 10.1002/mop.28126
  • [32] Mondal S, Sarka, PP. Novel design of compact wideband planar metal antenna. Indian Journal of Pure and Applied Physics 2014; 52 (12): 851-856.
  • [33] Mondal S, Mandal K, Sarkar PP. Design of MIMO antenna for ultra-wideband applications. IETE Journal of Research 2018; 64 (4): 497-502. doi: 10.1080/03772063.2016.1176540
  • [34] Castles F, Isakov D, Lui A, Lei Q, Dancer C et al. Microwave dielectric characterisation of 3D-printed BaTiO 3/ABS polymer composites. Scientific Reports 2016; 6: 22714. doi: 10.1038/srep22714