Transmission expansion planning based on a hybrid genetic algorithm approach under uncertainty

Transmission expansion planning based on a hybrid genetic algorithm approach under uncertainty

Transmission expansion planning (TEP) is one of the key decisions in power systems. Its impact on thesystem’s operation is excessive and long-lived. The aim of TEP is to determine new transmission lines effectively fora current transmission grid to fulfill the model objectives. However, to obtain a solution, especially under uncertainty,is extremely difficult due to the nonlinear mixed-integer structure of the TEP problem. In this paper, first geneticalgorithm (GA) approaches for TEP are reviewed in the literature and then a new hybrid GA with linear modelingis proposed. The proposed GA method has a flexible structure and the effectiveness of the method is assessed onGarver 6-bus, IEEE 24-bus, and South Brazilian test problems in the literature. It is observed that newly proposedhybrid GA shows a rapid convergence on the test problems. Scenarios are then generated for uncertainties suchas change in demand, oil prices, environmental issues, precipitation amounts, renewable generation, and productionfailures. Numerical results demonstrate that test problems are resolved successively under uncertainty conditions withthe proposed hybrid algorithm.

___

  • [1] Conejo A, Baringo S, Kazempour SJ, Siddiqui AS. Investment in Electricity Generation and Transmission Decision Making Under Uncertainty. Cham, Switzerland: Springer, 2016.
  • [2] Hernández JC, Ruiz-Rodriguez FJ, Jurado F. Modelling and assessment of the combined technical impact of electric vehicles and photovoltaic generation in radial distribution systems. Energy 2017; 141: 316-332. doi: 10.1016/j.energy.2017.09.025
  • [3] Ruiz-Rodriguez FJ, Hernández JC, Jurado F. Probabilistic load-flow analysis of biomass-fuelled gas engines with electrical vehicles in distribution systems. Energies 2017; 10 (10): 1536. doi: 10.3390/en10101536
  • [4] Ruiz-Rodriguez FJ, Hernández JC, Jurado F. Voltage behaviour in radial distribution systems under the uncertainties of photovoltaic systems and electric vehicle charging loads. International Transactions on Electrical Energy Systems 2018; 28 (2): e2490. doi: 10.1002/etep.2490
  • [5] Mavroeidis N. Transmission expansion planning under uncertainty. MSc, Delft University of Technology, Delft, the Netherlands, 2015.
  • [6] Alqurashi A, Etemadi AH, Khodaei A. Treatment of uncertainty for next generation power systems: state-of-the-art in stochastic optimization. Electric Power Systems Research 2016; 141: 233-245. doi: 10.1016/j.epsr.2016.08.009
  • [7] Hemmati R, Hooshmand RA, Khodabakhshian A. State-of-the-art of transmission expansion planning: comprehensive review. Renewable and Sustainable Energy Reviews 2013; 23: 312-319. doi: 10.1016/j.rser.2013.03.015
  • [8] Latorre G, Cruz RD, Areiza JM, Villegas A. Classification of publications and models on transmission expansion planning. IEEE Transactions on Power Systems 2013; 18 (2): 938-946. doi: 10.1109/TPWRS.2003.811168
  • [9] Niharika I, Verma S, Mukherjee V. Transmission expansion planning: a review. In: IEEE 2016 International Conference on Energy Efficient Technologies for Sustainability; Nagercoil, India; 2016. pp. 350-355. doi: 10.1109/ICEETS.2016.7583779
  • [10] Mahdavi M, Antunez CS, Ajalli M, Romero R. Transmission expansion planning: literature review and classification. IEEE Systems Journal 2018: 1-12. doi: 10.1109/JSYST.2018.2871793
  • [11] Purchala K, Meeus L, Dommelen DV, Belmans R. Usefulness of DC power flow for active power flow analysis. In: IEEE 2005 Power Engineering Society General Meeting Conference; San Francisco, CA, USA; 2005. pp. 1-6. doi: 10.1109/PES.2005.1489581
  • [12] Macedo LH, Montes CV, Franco JF, Rider MJ, Romero R. MILP branch flow model for concurrent AC multistage transmission expansion and reactive power planning with security constraints. IET Generation Transmission & Distribution 2016; 10 (12): 3023-3032. doi: 10.1049/iet-gtd.2016.0081
  • [13] Fathy AA, Elbages MS, El-Sehiemy RA, Bendary FM. Static transmission expansion planning for realistic networks in Egypt. Electric Power Systems Research 2017; 151: 404-418. doi: 10.1016/j.epsr.2017.06.007
  • [14] Maghouli P, Hosseini SH, Oloomi M, Shahidehpour. A multi-objective framework for transmission expansion planning in deregulated environments. IEEE Transactions on Power Systems 2009; 24 (2): 1051-1061. doi: 10.1109/TPWRS.2009.2016499
  • [15] Garver LL. Transmission network estimation using linear programming. IEEE Transactions on Power Apparatus and Systems 1970; 89 (5): 1688-1697. doi: 10.1109/TPAS.1970.292825
  • [16] Binato S, Pereira JLR, Granville S. A new Benders decomposition approach to solve power transmission network design problems. IEEE Transactions on Power Systems 2001; 16 (2): 235-240. doi: 10.1109/59.918292
  • [17] Romero R, Monticelli A. A hierarchical decomposition approach for transmission network expansion planning. IEEE Transactions on Power Systems 1994; 9 (1): 373-379. doi: 10.1109/59.317588
  • [18] Haffner S, Monticelli A, Garcia A, Romero R. Specialised branch-and-bound algorithm for transmission network expansion planning. IEE Proceedings-Generation Transmission and Distribution 2001; 148 (5): 482-488. doi: 10.1049/ip-gtd:20010502
  • [19] Rider MJ, Garcia AV, Romero R. Transmission system expansion planning by a branch-and-bound algorithm. IET Generation Transmission & Distribution 2008; 2 (1): 90-99. doi: 10.1049/iet-gtd:20070090
  • [20] Hariyanto N, Haroen Y, Machbub C. Decentralized and simultaneous generation and transmission expansion planning through cooperative game theory. International Journal on Electrical Engineering and Informatics 2009; 1 (2): 149-164. doi: 10.15676/ijeei.2009.1.2.6
  • [21] Xiaotong L, Yimei L, Xiaoli Z, Ming Z. Generation and transmission expansion planning based on game theory in power engineering. Systems Engineering Procedia 2012; 4: 79-86. doi: 10.1016/j.sepro.2011.11.052
  • [22] Duconchet YP, El-Abiad A. Transmission planning using discrete dynamic optimizing. IEEE Transactions on Power Apparatus and Systems 1973; 92 (4): 1358-1371. doi: 10.1109/TPAS.1973.293543
  • [23] Limsakul P, Pothiya S, Leeprechanon N. Application of ant colony optimization to transmission network expansion planning with security constraint. In: IEEE 2009 8th International Conference on Advances in Power System Control, Operation and Management; Hong Kong, China; 2009. pp. 1-6. doi: 10.1049/cp.2009.1757
  • [24] Jin YX, Cheng HZ, Yan HY, Zhang L. New discrete method for particle swarm optimization and its application in transmission network expansion planning. Electric Power Systems Research 2007; 77 (3-4): 227-233. doi: 10.1016/j.epsr.2006.02.016
  • [25] Sousa AS, Asada EN. Combined heuristic with fuzzy system to transmission system expansion planning. Electric Power Systems Research 2011; 81 (1): 123-128. doi: 10.1016/j.epsr.2010.07.021
  • [26] Romero R, Gallego R, Monticelli A. Transmission system expansion planning by simulated annealing. IEEE Transactions on Power Systems 1996; 11 (1): 364-369. doi: 10.1109/59.486119
  • [27] Escobar A, Gallego R, Toro E. Tabu search applied to transmission system expansion planning considering deplanning. Revista Facultad De Ingenieria-Universidad De Antioquia 2009; 47: 164-175 (in Spanish with an abstract in English).
  • [28] Verma A, Panigrahi BK, Bijwe PR. Harmony search algorithm for transmission network expansion planning. IET Generation Transmission & Distribution 2010; 4 (6): 663-673. doi: 10.1049/iet-gtd.2009.0611
  • [29] Kaur R, Kaur T, Kumar M. An analyatical approach for transmission expansion planning with generation variations. In: IEEE 2017 International Conference on Environment and Electrical Engineering and IEEE 2017 Industrial and Commercial Power Systems Europe; Milan, Italy; 2017. pp. 1-8. doi: 10.1109/EEEIC.2017.7977849
  • [30] Leou RC. A multi-year transmission planning under a deregulated market. International Journal of Electrical Power & Energy System 2011; 33 (3): 708-714. doi: 10.1016/j.ijepes.2010.11.020
  • [31] Silva ID, Rider MJ, Romero R, Murari CA. Transmission network expansion planning considering uncertainness in demand. In: IEEE 2005 Power Engineering Society General Meeting Conference; San Francisco, CA, USA; 2005. pp. 1424-1429. doi:10.1109/PES.2005.1489297
  • [32] Alizadeh B, Dehghan S, Amjady N, Jadid S, Kazemi A. Robust transmission system expansion considering planning uncertainties. IET Generation Transmission & Distribution 2013; 7 (11): 1318-1331. doi: 10.1109/PES.2005.1489297
  • [33] Garcia-Bertrand R, Minguez R. Dynamic robust transmission expansion planning. IEEE Transactions on Power Systems 2017; 32 (4): 2618-2628. doi: 10.1109/TPWRS.2016.2629266
  • [34] Minguez R, Garcia-Bertrand R. Robust transmission network expansion planning in energy systems: improving computational performance. European Journal of Operational Research 2016; 248 (1): 21-32. doi: 10.1016/j.ejor.2015.06.068
  • [35] Ruiz C, Conejo AJ. Robust transmission expansion planning. European Journal of Operational Research 2015; 242 (2): 390-401. doi: 10.1016/j.ejor.2014.10.030
  • [36] Gabrel V, Murat C, Thiele A. Recent advances in robust optimization: an overview. European Journal of Operational Research 2014; 235 (3): 471-483. doi: 10.1016/j.ejor.2013.09.036
  • [37] Yang N, Wen FS. A chance constrained programming approach to transmission system expansion planning. Electric Power Systems Research 2005; 75 (2-3): 171-177. doi: 10.1016/j.epsr.2005.02.002
  • [38] Gallego RA, Monticelli A, Romero R. Transmission system expansion planning by an extended genetic algorithm. IEE Proceedings-Generation Transmission and Distribution 1998; 145 (3): 329-335. doi: 10.1049/ip-gtd:19981895
  • [39] Silva ID, Rider MJ, Romero R, Murari CAF. Transmission network expansion planning considering uncertainty in demand. IEEE Transactions on Power Systems 2006; 21 (4): 1565-1573. doi: 10.1109/TPWRS.2006.881159
  • [40] Lu M, Dong ZY, Saha TK. A framework for transmission planning in a competitive electricity market. In: IEEE/PES 2005 Transmission & Distribution Conference & Exposition: Asia and Pacific Conference; Dalian, China; 2005. pp. 1-6. doi: 10.1109/TDC.2005.1547025
  • [41] Sum-Im T, Taylor GA, Irving MR, Song YH. A comparative study of state-of-the-art transmission expansion planning tools. In: IEEE 2006 Proceedings of the 41st International Universities Power Engineering Conference; Newcastle-upon-Tyne, UK; 2006. pp. 267-271. doi: 10.1109/UPEC.2006.367757
  • [42] Jalilzadeh S, Kazemi A, Shayeghi H, Madavi M. Technical and economic evaluation of voltage level in transmission network expansion planning using GA. Energy Conversion and Management 2008; 49 (5): 1119-1125. doi: 10.1016/j.enconman.2007.09.013
  • [43] Jalilzadeh S, Shayeghi H, Mahdavi M, Hadadian H. A GA based transmission network expansion planning considering voltage level, network loses and number of bundle lines. American Journal of Applied Sciences 2009; 6 (5): 987-994. doi: 10.3844/ajassp.2009.987.994
  • [44] Sadegheih A, Drake PR. System network planning expansion using mathematical programming, genetic algorithms and tabu search. Energy Conversion and Management 2008; 49 (6): 1557-1566. doi: 10.1016/j.enconman.2007.12.004
  • [45] Poubel RPB, De Oliveira EJ, Manso LAF, Honório LM, Oliveira LW. Tree searching heuristic algorithm for multistage transmission planning considering security constraints via genetic algorithm. Electric Power Systems Research 2017; 142: 290-297. doi: 10.1016/j.epsr.2016.09.023
  • [46] Gallego LA, Garces LP, Rahmani M, Romero RA. High-performance hybrid genetic algorithm to solve transmission network expansion planning. IET Generation Transmission & Distribution 2017; 11 (5): 1111-1118. doi: 10.1049/ietgtd.2016.0511
  • [47] Romero R, Rider MJ, Silva ID. A metaheuristic to solve the transmission expansion planning. IEEE Transactions on Power Systems 2007; 22 (4): 2289-2291. doi: 10.1109/TPWRS.2007.907592
  • [48] Gallego LA, Rider MJ, Lavorato M, Feltrin AP. An enhanced genetic algorithm to solve the static and multistage transmission network expansion planning. Journal of Electrical and Computer Engineering 2012; 7: 1-13. doi: 10.1155/2012/781041
  • [49] Chu PC, Beasley JE. A genetic algorithm for the generalised assignment problem. Computers and Operations Research 1997; 24 (1): 17-23. doi: 10.1016/S0305-0548(96)00032-9
  • [50] Romero R, Monticelli A, Garcia A, Haffner S. Test systems and mathematical models for transmission network expansion planning. IEE Proceedings-Generation Transmission and Distribution 2002; 149 (1): 27-36. doi: 10.1049/ipgtd:20020026
  • [51] Gen M, Cheng R, Lin L. Network Model and Optimization: Multiobjective Genetic Algorithm Approach. London, UK: Springer, 2008.
  • [52] Fang R, Hill DJ. A new strategy for transmission expansion in competitive electricity markets. IEEE Transactions on Power Systems 2003; 18 (1): 374-380. doi: 10.1109/TPWRS.2002.807083
  • [53] Haffner S, Monticelli A, Garcia A, Mantovani J, Romero R. Branch and bound algorithm for transmission system expansion planning using a transportation model. IEE Proceedings-Generation Transmission and Distribution 2000; 147 (3): 149-156. doi: 10.1049/ip-gtd:20000337
  • [54] Silva ID, Rider MJ, Romero R, Garcia AV, Murari CA. Transmission network expansion planning with security constraints. IEE Proceedings-Generation Transmission and Distribution 2005; 152 (6): 828-836. doi: 10.1049/ipgtd:20045217
  • [55] Grigg C, Wong P, Albrecht P, Allan R, Bhavaraju M et al. The IEEE reliability test system 1996: a report prepared by the reliability test system task force of the application of probability methods subcommittee. IEEE Transactions on Power Systems 1999; 14 (3): 1010-1020. doi: 10.1109/59.780914
  • [56] Verma S, Mukherjee V. Investigation of static transmission expansion planning using the symbiotic organisms search algorithm. Engineering Optimization 2018; 50 (9): 1544-1560. doi: 10.1080/0305215X.2017.1408085
  • [57] Silva ID, Rider MJ, Romero R, Murari CA. Genetic algorithm of Chu and Beasley for static and multistage transmission expansion planning. In: IEEE 2006 Power Engineering Society General Meeting Conference; Montreal, Canada; 2006. pp. 1-7. doi: 10.1109/PES.2006.1709172