A novel approach to solve transient stability constrained optimal power ow problems
A novel approach to solve transient stability constrained optimal power ow problems
This paper proposes an approach to solve the transient stability constraint optimal power ow (TSC-OPF) problem. The transient stability constraints are expressed as the critical clearing time (CCT) of different contingencies, and are approximated using arti cial neural networks (ANNs). The ANNs provide a nonlinear, differentiable mapping between the load ow variables and the CCT. As a result, the TSC-OPF with multiple transient stability constraints can be solved very efficiently with little additional computational burden. The effectiveness of the proposed method is demonstrated with the IEEE 39 bus and the IEEE 300 bus systems.
___
- [1] Kundur P, Paserba J, Ajjarapu V, Andersson G, Bose A, Canizares C, Hatziargyriou N, Hill D, Stankovic A, Taylor C et al. De nition and classi cation of power system stability. IEEE T Power Syst 2004; 19: 1387-1401.
- [2] Gan D, Thomas RJ, Zimmerman RD. Stability-constrained optimal power ow. IEEE T Power Syst 2000; 15: 535-540.
- [3] Yuan Y, Sasaki H. A solution of optimal power ow with multicontingency transient stability constraints. IEEE T Power Syst 2003; 18: 1094-1102.
- [4] Zarate-mi~nano R, Van Cutsem T, Milano F, Conejo AJ. Securing transient stability using time-domain simulations within an optimal power ow. IEEE T Power Syst 2010; 25: 243-253.
- [5] Pizano-martnez A, Fuerte-esquivel CR, Ruiz-vega D. Global transient stability-constrained optimal power ow using an OMIB reference trajectory. IEEE T Power Syst 2010; 25: 392-403.
- [6] Xin H, Gan D, Huang Z, Zhuang K, Cao L. Applications of stability-constrained optimal power ow in the east china system. IEEE T Power Syst 2010; 25: 423-1433.
- [7] Tu X, Dessaint LA, Nguyen-Duc H. Transient stability constrained optimal power ow using independent dynamic simulation. IET Gener Transm Dis 2013; 7: 244-253.
- [8] Tu X, Dessaint LA, Kamwa I. Fast approach for transient stability constrained optimal power ow based on dynamic reduction method. IET Gener Transm Dis 2014; 8: 1293-1305.
- [9] Xu Y, Dong ZY, Zhao J, Xue Y, Hill DJ. Trajectory sensitivity analysis on the equivalent one-machine-in nite-bus of multi-machine systems for preventive transient stability control. IET Gener Transm Dis 2014; 9: 276-286.
- [10] Fang DZ, Xiaodong Y, Jingqiang S, Shiqiang Y, Yao Z. Optimal generation rescheduling approach for transient stability enhancement. IEEE T Power Syst 2007; 22: 386-394.
- [11] Hou G, Vittal V. Determination of transient stability constrained interface real power ow limit using trajectory sensitivity approach. IEEE T Power Syst 2013; 28: 2156-2163.
- [12] Cai HR, Chung CY, Wong KP. Application of differential evolution algorithm for transient stability constrained optimal power ow. IEEE T Power Syst 2008; 23: 719-728.
- [13] Mo N, Zou ZY, Chan KW, Pong TYG. Transient stability constrained optimal power ow using particle swarm optimisation. IET Gener Transm Dis 2007; 1: 476-483.
- [14] Wu D, Gan D, Jiang JN. An improved micro-particle swarm optimization algorithm and its application in transient stability constrained optimal power ow. Eur T Electr Power 2014; 24: 395-411
- [15] Ayan K, Klc U, Barakl B. Chaotic arti cial bee colony algorithm based solution of security and transient stability constrained optimal power ow. Int J Elec Power 2015; 64: 136-147.
- [16] Ahmadi H, Ghasemi H, Haddadi AM. Lesani H. Two approaches to transient stability-constrained optimal power ow. Int J Elec Power 2013; 47: 181-192.
- [17] Tangpatiphan K, Yokoyama A. Evolutionary programming incorporating neural network for transient stability constrained optimal power ow. In: 2008 Joint International Conference on Power System Technology and IEEE Power India Conference. New Delhi, India. pp. 1-6.
- [18] Mahmoudi M, Aghamohammadi MR. A new approach for transient stability constrained opf based on neural network and genetic algorithm. In: 31th Power System Conference; 2016 (PSC2016). Tehran, Iran. pp. 1-7.
- [19] Jayasekara B, Annakkage UD. Derivation of an accurate polynomial representation of the transient stability boundary. IEEE T Power Syst 2006; 21: 1856-1863.
- [20] Abdallah H, Chtourou M, Guesmi T, Ouali A. Feedforward neural network-based transient stability analysis of electric power systems. Eur T Electr Power 2006; 16: 577-590.
- [21] Karami A. Estimation of the critical clearing time using MLP and BRF neural networks. Int T Electr Power 2010; 20: 206-217.
- [22] Moulin LS, da Silva APA, El-Sharkawi MA, Marks RJ. Support vector machines for transient stability analysis of large scale power systems. IEEE T Power Syst 2004; 19: 818-825.
- [23] Karami A. Power system transient stability margin estimation using neural networks. Int J Elec Power 2011; 33: 983-991.
- [24] Pizano-Martinez A, Fuerte-Esquivel CR, Ruiz-Vega D. A new practical approach to transient stability-constrained optimal power ow. IEEE T Power Syst 2011; 26: 1686-1696.
- [25] Wehenkel LA. Automatic Learning Techniques in Power Systems. New York, NY, USA: Springer, 1998.
- [26] Sulistiawati I, Priyadi A, Qudsi O, Soeprijanto A, Yorino N. Critical clearing time prediction within various loads for transient stability assessment by means of the extreme learning machine method. Int J Elec Power 2016; 77: 345-352.
- [27] Cole S, Belmans R. MatDyn, a new MATLAB-based toolbox for power system dynamic simulation. IEEE T Power Syst 2011; 26: 1129-1136.
- [28] Pai MA. Energy Function Analysis for Power System Stability. New York, NY, USA: Springer, 1989.
- [29] Zimmerman RD, Murillo-Sanchez CE, Thomas RJ. Matpower: steady state operations, planning and analysis tools for power systems research and education. IEEE T Power Syst 2011; 26: 12-19.
- [30] Geng G, Ajjarapu V, Jiang Q. A hybrid dynamic optimization approach for stability constrained optimal power ow. IEEE T Power Syst 2014; 29: 2138-2149.
- [31] Jiang Q, Geng G. A reduced-space interior point method for transient stability constrained optimal power ow. IEEE T Power Syst 2010; 25: 1232-1240.