Investigations on cogging torque mitigation techniques of transverse flux motor for direct drive low-speed spacecraft applications

Investigations on cogging torque mitigation techniques of transverse flux motor for direct drive low-speed spacecraft applications

The transverse flux motor (TFM) is an ideal choice for direct drive high torque applications owing to its proven higher torque density compared to the radial flux and axial flux motors. TFM motors have several merits to be used for spacecraft applications, considering the everlasting demand of the industry for reduction in power and mass. This paper investigates the various cogging torque mitigation techniques for transverse flux motor to be effectively used as the drive motor for precise position control spacecraft requirement. The paper discusses the basic design variables of surface mounted TFM (SM-TFM) that are to be considered for minimizing the cogging torque. The effectiveness of cogging torque mitigation techniques are presented for two cases of SM-TFM, one with maximum cogging torque and the other with minimum cogging torque. The different torque ripple minimization techniques studied include skewing of rotor poles, notching of the stator poles, introduction of asymmetry in the stator structure, provision of wedges by the side of poles, segmentation of the magnets and introduction of shunt. The effectiveness of these cogging torque mitigation techniques is studied on two hardware variants of the TFM, one with the modified stator having shunt and the other with the modified rotor having low remanence permanent magnet. The TFM with a shunted stator is effective in torque ripple reduction in addition to the improvements in electromagnetic torque.

___

  • [1] Selection of electric motors for aerospace applications - NASA Document on Preferred Reliability Practice. pp. 1-6. Practice No. PD-ED-1229.
  • [2] RP Praveen, MH Ravichandran. A Novel Slotless Halbach-Array Permanent-Magnet Brushless DC Motor for Spacecraft Applications. IEEE Transactions on Industrial Electronics 2012; 59 (9): 3553-3560. doi: 10.1109/TIE.2011.2161058
  • [3] Roddy D. Satellite Communications. Mc-Graw Hill Publications, 1995.
  • [4] Zhang BO, Gregor M. A comparison of the transverse, axial and radial flux PM synchronous motors for electric vehicle. In: IEEE International Electric Vehicle Conference; Florence, Italy; 2014. pp. 1-6. doi: 10.1109/IEVC.2014.7056197
  • [5] Joao S,Garcia D, Mauricio V, Ferreira da Luz. Transverse Flux Machines - What for. IEEE Transactions on Multidisciplinary Engineering Education Magazine 2007; 2 (1): 4-6.
  • [6] Jordan S, Baker NJ. Air-cooled, high torque machines for aerospace applications. In: 8th IET International Conference on Power Electronics Machines and Drives; Glasgow, UK; 2016. pp. 1-6. doi: 10.1049/cp.2016.0236
  • [7] Yang X, Kou B. Electromagnetic Design of a Dual-Consequent-Pole Transverse Flux Motor. IEEE Transactions on Energy Conversion 2020; 35 (3): 1547–1557. doi: 10.1109/TEC.2020.2982432
  • [8] Changpeng LV, Lichun Zhang, Yongxiang Xu. Research on novel high torque density transverse flux permanent magnet motor. In: 22nd International Conference on Electrical Machines and Systems; Harbin, China; 2019. pp. 1-5. doi: 10.1109/ICEMS.2019.8922009
  • [9] Bheeman V, Nagaratnam S. Effect of Stator permanent magnet thickness and rotor geometry modifications on the minimization of cogging torque of a flux reversal machine. Turkish Journal of Electrical Engineering & Computer Science 2017; 25 (1): 4907-4922. doi: 10.3906/elk-1703-33
  • [10] Bianchi N, Bolognani S. Design techniques for reducing the cogging torque in surface-mounted PM motors. IEEE Transactions on Industrial Applications 2002; 38 (5): 1259–1265. doi: 10.1109/TIA.2002.802989
  • [11] Bianchini C, Immovilli F, Lorenzani E, Davoli M. Review of design solutions for internal permanentmagnet machines cogging torque reduction. IEEE Transactions on Magnetics 2012; 48 (10): 2685–2693. doi: 10.1109/TMAG.2012.2199509
  • [12] Muljadi E,Green J. Cogging torque reduction in a permanent magnet wind turbine generator. In: 21st Mechanical Engineers Wind Energy Symposium of American Society; Reno, Nevada; 2002. pp. 340–342.
  • [13] Aydin M. Magnet skew in cogging torque minimization of axial gap permanent magnet motors. In: International Conference on Electrical Machines and Systems; Wuhan, China; 2008. pp. 1–6. doi: 10.1109/ICELMACH.2008.4799945
  • [14] Caricchi CF, Capponi FG, Crescimnini F. Experimental study on reducing cogging torque and no-load power loss in axial flux permanent magnet machines with slotted winding. IEEE Transactions on Industrial Applications 2004; 40 (4): 1066-1075. doi: 10.1109/TIA.2004.831273
  • [15] Dreher F, Parspour M. Reducing the cogging torque on PM transverse flux machines by discrete skewing of a segmented stator. In: 20th International Conference on Electrical Machines; Marseille, France; 2012. pp. 454-457. doi: 10.1109/ICElMach.2012.6349908
  • [16] Islam R, Husain I,McLaughlin K. Permanent-magnet synchronous motor magnet designs with skewing for torque ripple and cogging torque reduction. IEEE Transactions on Industrial Applications 2009; 45 (1): 152– 160. doi: 10.1109/TIA.2008.2009653
  • [17] Shao N, Li Zhu. Analytical Methods for Optimal Rotor Step Skewing To Minimize Cogging Torque in Permanent Magnet Motors. In: 22nd International Conference on Electrical Machines and Systems; Harbin, China; 2019. pp. 1-5. doi: 10.1109/ICEMS.2019.8921502
  • [18] Aydi M, RQR Qu, Lipo TA . Cogging torque minimization technique for multiple-rotor, axial-flux, surface-mountedPM motors: Alternating magnet pole-arcs in facing rotors. In: 38th IAS Annual Conference; Salt Lake City, UT, USA; 2003. pp. 555-561. doi: 10.1109/IAS.2003.1257555
  • [19] Kastinger G,Schumacher A. Reducing Torque ripple of transverse flux machines by structural designs. In: IET International Conference on Power Electronics and Drives; Sante Fe, NM, USA; 2002. pp. 320-324. doi: 10.1049/cp:20020136
  • [20] Lee JY, Chang JH. Tooth shape optimization for cogging torque reduction of transverse flux rotary motor using design of experiment and response methodology. IEEE Transactions on Magnetics 2007; 43 (4): 1817-1820. doi: 10.1109/TMAG.2007.892611
  • [21] Gonzalez DA, Tapia JA . Design consideration to reduce cogging torque in axial flux permanent-magnet machines. IEEE Transactions on Magnetics 2007; 43 (8): 3435-3440. doi: 10.1109/TMAG.2007.899349
  • [22] Letelier AB , Gonzalez DA , Tapia JJ . Cogging torque reduction in an axial flux PM machine via stator slot displacement and skewing. IEEE Transactions on Industrial Applications 2007; 43 (3): 685-696. doi: 10.1109/TIA.2007.895738
  • [23] J Yan, H Lin, ZQ Zhu, P Jin, Y Guo. Cogging torque optimization of flux switching transverse flux permanent magnet machine. IEEE Transactions on Magnetics 2013; 46 (5): 2169-2172. doi: 10.1109/TMAG.2013.2244855
  • [24] Yasuhito Ueda, Hiroshu Takahashi. Cogging Torque Reduction on Transverse-Flux Motor with Multilevel Skew configuration of Tooths Cores. IEEE Transactions on Magnetics 2019; 55 (7): 1-5. doi: 10.1109/TMAG.2019.2893023
  • [25] H Ahn, G Jang, D Kang. Reduction of the torque ripple and magnetic force of a rotatory two-phase transverse flux machine using herringbone teeth. IEEE Transactions on Magnetics 2008; 44 (11): 4066–4069. doi: 10.1109/TMAG.2008.2001586
  • [26] Yubo Yang, Xiuhe Wang. Study of magnet asymmetry for reduction of cogging torque in permanent magnet motors. In: 4th IEEE International Conference on Industrial Electronics and Application; Xi’an, China; 2009. pp. 2325-2328. doi: 10.1109/ICIEA.2009.5138614
  • [27] C Breton, J Bartolome. Influence of machine symmetry on the reduction of cogging torque in permanent-magnet brushless motors. IEEE Transactions on Magnetics 2000; 36 (5): 3819-3823. doi: 10.1109/20.908386
  • [28] C Liu, J Zhu, Cogging Torque Minimization of SMC PM Transverse Flux Machines Using Shifted and Unequal-Width Stator Teeth. IEEE Transactions on Applied Superconductivity 2016; 26 (4): 1-4. doi: 10.1109/TASC.2016.2543959
  • [29] Li Hao, Mingyao Lin, Da Xu, Nian Li, Wei Zhang. Cogging Torque Reduction of Axial-Field Flux-Switching Permanent Magnet Machine by Rotor Tooth Notching. IEEE Transactions on Magnetics 2015; 51 (11): 1-4. doi: 10.1109/TMAG.2015.2453340
  • [30] .Jin Woo Lee, Hong Seok Kim, Byung Il Kwon, Byung Taek Kim. New Rotor Shape Design for Minimum Torque Ripple of SRM Using FEM. IEEE Transactions on Magnetics 2004; 40 (2): 754-757. doi: 10.1109/TMAG.2004.824803
  • [31] Ramdane Lateb, Noureddine Takorabet, Farid Meibody-Tabar. Effect of Magnet Segmentation on the Cogging Torque in Surface-Mounted Permanent-Magnet Motors. IEEE Transactions on Magnetics 2006; 42 (3): 442-445. doi: 10.1109/TMAG.2005.862756
  • [32] O Dobzhanskyi, R Gouws, E Amiri. On the Role of Magnetic Shunts for Increasing Performance of Transverse Flux Machines. IEEE Transactions on Magnetics 2017; 53 (2): 1-8. doi: 10.1109/TMAG.2016.2621047
Turkish Journal of Electrical Engineering and Computer Sciences-Cover
  • ISSN: 1300-0632
  • Yayın Aralığı: Yılda 6 Sayı
  • Yayıncı: TÜBİTAK
Sayıdaki Diğer Makaleler

On an electrostatic micropump with a rigorous mathematical model

Fatih DIKMEN, Ibrahim EFE, Yury TUCHKIN

Clustering with density based initialization and Bhattacharyya based merging

Erdem KÖSE, Ali Köksal HOCAOĞLU

Design and manufacture of electromagnetic absorber composed of boric acid-incorporated wastepaper composites

Osman ÇEREZCİ, Filiz KIRDIOĞULLARI, Mesud KAHRİMAN, Ahmet ÇİFCİ, Ali İhsan KAYA

Developing a fake news identification model with advanced deep language transformers for Turkish COVID-19 misinformation data

Mehmet BOZUYLA, Akın ÖZÇİFT

Microwave hyperthermia application with bioimplant single slot coaxial antenna design for mouse breast cancer treatment

Ahmet Rifat GÖRGÜN, Cem BAYTORE, Adnan KAYA, M. Ibrahim TUGLU, Selcuk COMLEKCI

Cryptographically strong random number generation using integrated CMOS photodiodes for low-cost microcontroller based applications

Baykal Sarıoğlu

Scattering analyses of arbitrary roughness from 2-D perfectly conductive periodic surfaces with moments method

Yunus Emre YAMAÇ, Ahmet KIZILA

A factor graph optimization mapping based on normal distributions transform

Ming LU, Kedi ZHONG, Jun ZHANG, Yuansheng LIU, Jiansuo YANG

TARA: temperature aware online dynamic resource allocation scheme for energy optimization in cloud data centres

Sridhar SRIDEVI, Vaidyanathan RHYMEND UTHARIARAJ, Narayanamoorthi THILAGAVATHI, Arockiasamy JOHN PRAKASH

Performance analysis and feature selection for network-based intrusion detection with deep learning

Nesli ERDOĞMUŞ, Serhat CANER, Y. Murat ERTEN