Fully integrated universal biquads using operational transresistance amplifiers with MOS-C realization

Universal biquadratic filters employing operational transresistance amplifiers are presented. All 5 different second-order filtering functions, namely low-pass, high-pass, band-pass, notch, and all-pass, can be realized. The quality factor of the filters can be adjusted electronically without affecting resonant frequency. The configuration can be made fully integrated based on MOS-C realization, by making use of the current differencing and internally grounded inputs of OTRA. PSpice simulation results are given to verify the theoretical analysis.

Fully integrated universal biquads using operational transresistance amplifiers with MOS-C realization

Universal biquadratic filters employing operational transresistance amplifiers are presented. All 5 different second-order filtering functions, namely low-pass, high-pass, band-pass, notch, and all-pass, can be realized. The quality factor of the filters can be adjusted electronically without affecting resonant frequency. The configuration can be made fully integrated based on MOS-C realization, by making use of the current differencing and internally grounded inputs of OTRA. PSpice simulation results are given to verify the theoretical analysis.

___

  • J.J. Chen, H.W. Tsao, C. Chen, “Operational transresistance ampliŞer using CMOS technology”, Electronics Letters, Vol. 28, pp. 2087-2088, 1992.
  • J.J. Chen, H.W. Tsao, S.I. Liu, W. Chui, “Parasitic-capacitance-insensitive current-mode Şlters using operational transresistance ampliŞer”, IEE Proceedings Part G: Circuits, Devices and Systems, Vol. 142, pp. 186-192, 1995.
  • H. Elwan, A.M. Soliman, M. Ismail, “A CMOS Norton ampliŞer-based digitally controlled VGA for low-power wireless applications”, IEEE Transactions on Circuits and Systems-II: Analog and Digital Signal Processing, Vol. , pp. 245-254, 2001.
  • A. Ravindran, A. Savla, I. Younus, M. Ismail, “A 0.8V CMOS Şlter based on a novel low voltage operational transresistance ampliŞer”, IEEE International Midwest Symposium on Circuits and Systems, Vol. 3, pp. 368-371, K.N. Salama, A.M. Soliman, “Universal Şlters using the operational transresistance ampliŞers”, AEU-International Journal of Electronics and Communications, Vol. 53, pp. 49-52, 1999.
  • K.N. Salama, A.M. Soliman, “Novel oscillators using operational transresistance ampliŞer”, Microelectronics Jour- nal, Vol. 31, pp. 39-47, 2000.
  • U. Cam, “A novel single-resistance-controlled sinusoidal oscillator employing single operational transresistance ampliŞer”, Analog Integrated Circuits and Signal Processing, Vol. 32, pp. 183-186, 2002.
  • U. Cam, F. Kacar, O. Cicekoglu, H. Kuntman, A. Kuntman, “Novel grounded parallel immitance simulator topologies employing single OTRA”, AEU-International Journal of Electronics and Communications, Vol. 57, pp. 290, 2003.
  • S. Kılın¸c, U. C¸ am, “A new biquadratic Şlter conŞguration employing a single operational transresistance ampliŞer”, European Conference on Circuit Theory and Design, Vol. 1, pp. 275-278, 2003.
  • U. Cam, C. Cakir, O. Cicekoglu, “Novel transimpedance type Şrst-order all-pass Şlter using single OTRA”, AEU- International Journal of Electronics and Communications, Vol. 58, pp. 296-298, 2004.
  • F. Kacar, “Operational transresistance ampliŞer based current-mode all-pass Şlter topologies”, Applied Electronics, pp. 149-152, 2009.
  • Y.S. Hwang, D.S. Wu, J.J. Chen, C.C. Shih, W.S. Chou, “Realization of high order OTRA MOSFET-C active Şlters”, Circuits Systems Signal Processing, Vol. 26, pp. 281-291, 2007.
  • Y.S. Hwang, D.S. Wu, J.J. Chen, C.C. Shih, W.S. Chou, “Design of current mode MOSFET-C Şlters using OTRAs”, International Journal of Circuit Theory and Applications, Vol. 37, pp. 397-411, 2009.
  • R. Pandey, M. Bothra, “Multiphase sinusoidal oscillators using operational trans-resistance ampliŞer”, IEEE Symposium on Industrial Electronics and Applications, pp. 371 - 376, 2009.
  • W. Kerwin, L. Huelsman, R. Newcomb, “State variable synthesis for insensitive integrated circuit transfer functions”, IEEE J. Solid State Circuits, Vol. 2, pp. 87-92, 1967.
  • L.C. Thomas, “The biquad: Part – Some practical design considerations”, IEEE Trans. Circuit Theory, Vol. CT-18, pp. 350-257, 1971.
  • J. Tow, “Active RC Şlters – A state-space realization”, Proceedings of the IEEE, Proceeding Letters, Vol. 56, pp. 1139, 1968.
  • R. Senani, V.K. Singh, “KHN-equivalent biquad using current conveyors”, Electronics Letters, Vol. 31, pp. 626-628, A.M. Soliman, “Kerwin-Huelsman-Newcomb circuit using current conveyors”, Electronics Letters, Vol. 30, 2019- , 1994.
  • S. Shah, D.R. Bhaskar, “Design of KHN biquad using operational transconductance ampliŞer”, The 2002 45th
  • Midwest Symposium on Circuit and Systems, Vol. 1, pp. 48-51, 2002.
  • A.M. Soliman, “Voltage mode and current mode Tow Thomas biquadratic Şlters using ICCII”, International Journal of Circuit Theory and Applications, Vol. 35, pp. 463-467, 2007.
  • A.M. Soliman, “Kerwin-Huelsman-Newcomb circuit using inverting current conveyors”, Journal of Active and Passive Electronic Devices, Vol. 3, pp. 273-279, 2008.
  • A.M. Soliman, “Generation and classiŞcation of Kerwin-Huelsman-Newcomb circuits using the DVCC”, Interna- tional Journal of Circuit Theory and Applications, DOI: 10.1002/cta.503, 2008.
  • J. Koton, N. Herencsar, K. Vrba, “KHN-equivalent voltage-mode Şlters using universal voltage conveyors”, Inter- national Journal Electron. Commun. (AEU), doi:10.1016/j.aeue.2010.02.005, 2010.
  • P.E. Fleischer, J. Tow, “Design formulas for biquad active Şlters using three operational ampliŞers”, Proceedings of the IEEE, Proceeding Letters, Vol. 61, pp. 662-663, 1973.