Action-reaction based parameters identification and states estimation of flexible systems

This work attempts to identify and estimate flexible system's parameters and states by a simple utilization of the Action-Reaction law of dynamical systems. Attached actuator to a dynamical system or environmental interaction imposes an action that is instantaneously followed by a dynamical system reaction. The dynamical system's reaction carries full information about the dynamical system including system parameters, dynamics and externally applied forces that arise due to system interaction with the environment. This in turn implies that the dynamical system's reaction can be considered as a natural feedback as it carries full coupled information about the dynamical system. The idea is experimentally implemented on a dynamical system with three flexible modes, then it can be extended to more complicated structures with infinite modes.

Action-reaction based parameters identification and states estimation of flexible systems

This work attempts to identify and estimate flexible system's parameters and states by a simple utilization of the Action-Reaction law of dynamical systems. Attached actuator to a dynamical system or environmental interaction imposes an action that is instantaneously followed by a dynamical system reaction. The dynamical system's reaction carries full information about the dynamical system including system parameters, dynamics and externally applied forces that arise due to system interaction with the environment. This in turn implies that the dynamical system's reaction can be considered as a natural feedback as it carries full coupled information about the dynamical system. The idea is experimentally implemented on a dynamical system with three flexible modes, then it can be extended to more complicated structures with infinite modes.