A new, improved CMOS realization of CDTA and its filter applications

This paper presents a high-performance current differencing transconductance amplifier (CDTA), a recently reported active element, especially suitable for analog signal processing applications. A high linearity CMOS configuration for a CDTA is made up of high linearity input and output stages. The proposed CDTA provides high output impedance at port X and excellent input/output current tracking. A biquad filter circuit was chosen as an application example in order to demonstrate the performance of the CDTA. PSpice simulation results using a TSMC 0.35-m m CMOS process model were included to verify the expected values.

A new, improved CMOS realization of CDTA and its filter applications

This paper presents a high-performance current differencing transconductance amplifier (CDTA), a recently reported active element, especially suitable for analog signal processing applications. A high linearity CMOS configuration for a CDTA is made up of high linearity input and output stages. The proposed CDTA provides high output impedance at port X and excellent input/output current tracking. A biquad filter circuit was chosen as an application example in order to demonstrate the performance of the CDTA. PSpice simulation results using a TSMC 0.35-m m CMOS process model were included to verify the expected values.

___

  • C. Toumazou, F. Lidjey, D. Haigh, Analog IC Design: The Current-Mode Approach, Exeter, UK, Peter Peregrinus, 1990.
  • Z. Wang, “Current-mode CMOS integrated circuits for analog computation and signal processing: a tutorial,” Analog Integrated Circuits and Signal Processing, Vol. 3, pp. 287-295, 1991.
  • B. Wilson, “Trend in current conveyor and current-mode ampliŞer design,” Int. J. Electron., Vol. 23, pp. 573-583, 1992.
  • K. Smith, A. Sedra, “The current conveyor - a new circuit building block,” IEEE Proc., Vol. 56, pp. 1368-1369, 1968.
  • A. Sedra, K.C. Smith, “A second-generation current conveyor and its applications,” IEEE Transactions on Circuit Theory, Vol. 17, pp. 132-134, 1970.
  • A.S. Sedra, G.W. Robertsand, F. Gohh, “The current conveyors: history, progress and new results,” IEE Proc. G, Vol. 137, pp. 78-87, 1990.
  • T. Kaulberg, “A CMOS current-mode operational ampliŞer,” IEEE J. Solid-State Circuits, Vol. 28, pp. 849-852, 1993.
  • E. Bruun, “Bandwidth optimization of a low power, high speed CMOS current op amp,” Analog Integrated Circuits and Signal Processing, Vol. 7, pp. 11-19, 1995.
  • E. Sanchez-Sinencio, R.L. Geiger, H. Nevarez-Lozano, “Generation of continuous-time two integrator loop OTA Şlter structures,” IEEE Trans. Circuits Syst., Vol. 35, pp. 936-946, 1988.
  • X. Zheng, B.J. Maundy, E.I. El-Masry, I.G. Finvers, “A novel low-voltage operational transconductance ampliŞer and its applications,” IEEE Int. Symp. Cir. Syst. ISCAS2000, Chap. II, pp. 661-664, 2000.
  • B. Wilson, “Constant bandwidth voltage ampliŞcation using current conveyor,” Int. J. Electron., Vol. 65, pp. 983-988, 1988.
  • E. Bruun, “Constant-bandwidth current mode operational ampliŞer,” Electron. Lett., Vol. 27, pp. 1673-1674, 1991. [13] T. Vansiri, C. Toumazou, “On the design of low-noise current-mode optical preampliŞers,” Analog Integrated Circuits and Signal Processing, Vol. 4, pp. 179-195, 1992.
  • L. van den Broeke, A. Nieuwkerk, “Wideband integrated receiver with improved dynamic range using a current switch at the input,” IEEE J. of Solid-State Circuits, Vol. 28, pp. 862-864, 1993.
  • D. Biolek, “CDTA - Building block for current-mode analog signal processing”, Proc. ECCTD’03, Vol. III, pp. 397-400, 2003.
  • D. Biolek, V. Biolkova, “CDTA-C current-mode universal 2nd-order Şlter”, Proceedings of the 5th WSEAS Inter- national Conference on Applied Informatics and Communications, pp. 411-414, 2005.
  • A. ¨U. Keskin, D. Biolek, “Current-mode quadrature oscillator using current differencing transconductance ampliŞer (CDTA)”, IEE Proc. Circuits Devices Syst., Vol. 153, pp.214-218, 2006.
  • A. Uygur, H. Kuntman, “Seventh order elliptic video Şlter with 0.1dB pass band ripple employed CMOS CDTAs”, AEU-Int. J. Electronics and Communications, Vol. 61, pp. 320-328, 2007.
  • A.T. Bekri, F. Anday, “Nth-order low-pass Şlter employing current differencing transconductance ampliŞers”, in Proceedings of the 2005 European Conference on Circuit Theory and Design, Vol. 2, pp. 193-196, 2005.
  • D. Biolek, V. Biolkova, “Universal biquads using CDTA elements for cascade Şlter design”, in Proceedings of the CSCC 2003, ISBN 960-8052-82-3 (CD), 2003.
  • W. Tanjaroen, T. Dumawipata, S. Unhavanich, W. Tangsrirat, W. Surakampontorn, “Design of current differencing transconductance ampliŞer and its application to current-mode KHN biquad Şlter”, Proceedings of ECTI-CON 2006, pp. 497-500, 2006.
  • D. Biolek, E. Hancioglu, A. ¨U. Keskin, “High-performance current differencing transconductance ampliŞer and its application in precision current-mode rectiŞcation”, AEU-Int. J. Electronics and Communications, Vol. 62, pp. 92-96, 2008.
  • A. ¨U. Keskin, D. Biolek, E. Hancioglu, V. Biolkov´a, “Current-mode KHN Şlter employing current differencing transconductance ampliŞers”, AEU-Int. J. Electronics and Communications, Vol. 60, pp. 443-446, 2006.
  • F. Ka¸car, H. Kuntman, “A new CMOS current differencing transconductance ampliŞer (CDTA) and its biquad Şlter application”, Proceedings of EUROCON’2009 (CD-ROM), 2009.
  • M. Siripruchyanun, W. Jaikla, “CMOS current-controlled current differencing transconductance ampliŞer and applications to analog signal processing”, AEU-Int. J. Electron. Commun., Vol. 62, pp. 277-287, 2008.
  • D. Biolek, R. Senani, V. Biolkova, Z. Kolka, “Active elements for analog signal processing: classiŞcation, review, and new proposals”, Radioengineering, Vol. 17, pp. 15-32, 2008.
  • J. Vlach, T.R. Viswanathan, K. Singhal, “Active Şlters for intermediate frequencies using low-gain transducers,” IEEE Trans. Circuits Syst., Vol. CAS-2, pp. 79-86, 1974.
  • L.T. Bruton, J.W. Haslett, M.K.N. Rao, “A monolithic VCCS for high-frequency RC active Şlters,” Electron. Lett., Vol. 16, pp. 175-177, 1980.
  • A. Nedungadi, T.R. Viswanathan, “Design of linear transconductance elements,” IEEE Transactions on Circuit Theory, Vol. CAS-31, pp. 891-894, 1984.
  • A. Zeki, H. Kuntman, “Accurate and high output impedance current mirror suitable for CMOS current output stages,” Electronics Letters, Vol. 33, pp. 1042-1043, 1997.
  • E. Sackinger, W. Guggenbuhl, “A high-swing, high-impedance MOS cascode circuit,” IEEE J. Solid State Circuits, Vol. SC-25, pp. 289-298, 1990.
  • A. Zeki, H. Kuntman, “High-output-impedance CMOS dual-output OTA suitable for wide-range continuous-time Şltering applications”, Electronics Letters, Vol. 35, pp. 1295-1296, 1999.
  • A. Zeki, H. Kuntman, “Accurate active-feedback CMOS cascode current mirror with improved output swing”, International Journal of Electronics, Vol. 84, pp. 335-343, 1998.