Tectonic geomorphology of the Yatağan Fault (Muğla, SW Turkey): implications for quantifying vertical slip rates along active normal faults

Tectonic geomorphology of the Yatağan Fault (Muğla, SW Turkey): implications for quantifying vertical slip rates along active normal faults

South Western Anatolia is dominated by E-W and NW-SE trending active faults. The dip-slip Yatağan Fault is one of these active structures that trends in a NW direction for ~30 km. To assess the relative tectonic activity of the Yatağan Fault, two geomorphic segments were defined along the fault: the FS-1 (northern segment) and the FS-2 (southern segment). The vertical slip rate pattern of the fault was analyzed using steepness indexes, chi (χ) plots, and log-log slope area graphs. Results of the analyses indicate that the steepness of the streams draining the footwall reveal increasingly higher values downstream along the fault. All of the main basins contain at least one slope-break knickpoint associated with tectonic uplift. Facet morphology-based investigations using empirical methods along faceted spurs of the Yatağan Fault indicate vertical slip rates of 0.16 ± 0.05 mm/year and 0.3 ± 0.05 mm/year for the FS-1 and the FS-2, according to relationship of facet slope angle (Rsa). Additionally, using the facet basal height relationship (Rbh) we calculated slip rates of 0.24 mm/year and 0.36 mm/year for the FS-1 and the FS-2 segments, respectively. Mountain front sinuosity analysis yields values of 1.34 and 1.2, while the ratio of valley-floor width to valley height gives values of 0.64 and 0.24 for the FS-1 and the FS-2 respectively, indicating typical active mountain front where the uplift rates are ≥ 0.5 mm/year. Hypsometric analysis suggest a transition from mature to older stage for catchments along the Yatağan Fault. Comprehensive interpretation of the results from morphometric analysis, vertical slip rate calculations, and data based on field observations suggest preponderance of tectonic activity over erosional process along the Yatağan Fault. Our analyses reveal that the rate of the tectonic activity gradually increases from the FS-1 to the FS-2 along the fault.

___

  • Akbaş B, Akdeniz N, Aksay A, Altun İ, Balcı V et al. (2011). Türkiye Jeoloji Haritası. Maden Tetkik ve Arama Genel Müdürlüğü Yayını. Ankara, Turkey: Maden Tetkik ve Arama Genel Müdürlüğü (in Turkish).
  • Akkök R (1983). Structural and metamorphic evolution of the northern part of the Menderes massif: new data from the Derbent area and their implication for the tectonics of the massif. The Journal of Geology. University of Chicago Press 91(3): 342-350.
  • Alipoor R, Poorkermani M, Zare M, El Hamdouni R (2011). Active tectonic assessment around Rudbar Lorestan dam site, High Zagros Belt (SW of Iran), Geomorphology. Elsevier 128 (1-2): 1-14.
  • Allen M, Jackson J, Walker R (2004). Late Cenozoic reorganization of the Arabia-Eurasia collision and the comparison of short-term and long-term deformation rates, Tectonics. Wiley Online Library 23(2).
  • Anoop A, Prasad S, Krishnan R, Naumann R, Dulski P (2013). Intensified monsoon and spatiotemporal changes in precipitation patterns in the NW Himalaya during the earlymid Holocene, Quaternary International. Elsevier 313: 74-84.
  • Armijo R, Lyon-Caen H, Papanastassiou D (1992). East-west extension and Holocene normal-fault scarps in the Hellenic arc, Geology. Geological Society of America 20(6): 491-494.
  • Ashworth JR, Evirgen MM (1985a). Plagioclase relations in pelites, central Menderes Massif, Turkey. I. The peristerite gap with coexisting kyanite, Journal of Metamorphic Geology. Wiley Online Library 3(3): 207-218.
  • Ashworth JR, Evirgen MM (1985b). Plagioclase relations in pelites, central Menderes Massif, Turkey. II. Perturbation of garnetplagioclase geobarometers, Journal of Metamorphic Geology. Wiley Online Library 3(3): 219-229.
  • Atalay Z (1980). Stratigraphy of continental Neogene in the region of Muğla-Yatağan, Turkey. Geological Bulletin of Turkey 23: 93-99.
  • Azor A, Keller EA, Yeats RS (2002). Geomorphic indicators of active fold growth: South Mountain–Oak Ridge anticline, Ventura basin, southern California, Geological society of america bulletin. Geological Society of America 114(6): 745-753.
  • Barka A, Reilinger R (1997). Active tectonics of the Eastern Mediterranean region: deduced from GPS, neotectonic and seismicity data. Annali di Geofisica 40 (3).
  • Basmenji M, Akyüz HS, Kırkan E, Aksoy ME, Uçarkuş G et al. (2021). Earthquake history of the Yatağan Fault (Muğla, SW Turkey): implications for regionalseismic hazard assessment and paleoseismology in extensional provinces. Turkish Journal of Earth Sciences 30: 161-181. doi: 10.3906/yer-2006-23
  • Başarır E (1970). Bafa gölünün doğusunda kalan Menderes Masifi güney kanadının jeolojisi ve petrografisi. Ege Üniversitesi Fen Fakültesi İlmi Raporları Serisi (102): 1-44.
  • Başarır E (1975). Çine Güneyindeki metamorfitlerin petrografisi ve bireysel indeks minerallerin doku içersindeki gelişimleri. PhD thesis, Ege Üniversitesi, İzmir, Turkey.
  • Benedetti L, Tapponnier P, King GC, Piccardi L (1998). Surface rupture of the 1857 southern Italian earthquake? Terra Nova 10(4): 206-210.
  • Boulton SJ (2020). Geomorphic response to differential uplift: river long profiles and knickpoints from Guadalcanal and Makira (Solomon Islands). Frontiers in Earth Science 8: 10.
  • Boulton SJ, Whittaker AC (2009). Quantifying the slip rates, spatial distribution and evolution of active normal faults from geomorphic analysis: field examples from an obliqueextensional graben, southern Turkey, Geomorphology. Elsevier 104(3-4): 299-316.
  • Bozkurt E (2001). Neotectonics of Turkey–a synthesis. Geodinamica Acta 14(1-3): 3-30.
  • Bozkurt E, Park LRG (1994). Southern Menderes Massif: an incipient metamorphic core complex in western Anatolia, Turkey. Journal of the Geological Society151(2): 213-216.
  • Brinkmann R (1966). Geotektonische Gliederung von Westanatolien. Neues Jahrbuch Geologie und Paleontogie Mh 10: 603-618.
  • Bull JM, Barnes PM, Lamarche G, Sanderson DJ, Cowie PA et al. (2006). High-resolution record of displacement accumulation on an active normal fault: implications for models of slip accumulation during repeated earthquakes. Journal of Structural Geology Elsevier 28(7): 1146-1166.
  • Bull WB (2008). Tectonic Geomorphology of Mountains: ANew Approach to Paleoseismology. Hoboken, NJ, USA: John Wiley & Sons.
  • Bull WB, McFadden LD (1977). Tectonic geomorphology north and south of the Garlock Fault, California. In: Doehring DO (editor). Geomorphology in Arid Regions: A Proceedings Volume of the 8th Annual Geomorphology Symposium. Binghamton, NY, USA: Binghamton University (State University of New York), pp. 115-138.
  • Burbank DW, Leland J, Fielding E, Anderson RS, Brozovic N et al. (1996). Bedrock incision, rock uplift and threshold hillslopes in the northwestern Himalayas, Nature. Nature Publishing Group 379(6565): 505-510.
  • Burbank DW, Anderson RS (2013). Tectonic geomorphology. Environmental and Engineering Geoscience (2013) 19 (2): 198-200.
  • Çağlayan A, Öztürk E, Öztürk Z, Halit SA, Umur AK et al. (1980). Menderes Masifi güneyine ait bulgular ve yapısal yorum. Jeoloji Mühendisliği Dergisi 4(1): 9-18.
  • Caputo R, Helly B (2005). The Holocene activity of the Rodia fault, central Greece, Journal of Geodynamics. Elsevier 40(2-3): 153- 169.
  • Clark MK, Maheo G, Saleeby J, Farley KA (2005). The non-equilibrium landscape of the southern Sierra Nevada, California, GSA Today. The Geologıcal Society of America, 15(9): 4.
  • Davis WM. The mountain ranges of the Great Basin. Harvard University Museum of Comparative Zoology Bulletin 42.
  • DePolo CM, Anderson JG (2000). Estimating the slip rates of normal faults in the Great Basin, USA, Basin Research. Wiley Online Library 12(3-4): 227-240.
  • Dewey JF, Helman ML, Knott SD, Turco E, Hutton DH (1989). Kinematics of the western Mediterranean, Geological Society, London, Special Publications. Geological Society of London 45(1): 265-283.
  • Dewey JF, Şengör AMC (1979). Aegean and surrounding regions: complex multiplate and continuum tectonics in a convergent zone, Geological Society of America Bulletin. Geological Society of America 90(1): 84-92.
  • DiBiase RA, Whipple KX, Heimsath AM, Ouimet WB (2010). Landscape form and millennial erosion rates in the San Gabriel Mountains, CA, Earth and Planetary Science Letters. Elsevier 289(1-2): 134-144.
  • Dora OÖ (2011). Historical evolution of the geological researches in the Menderes massif, Maden Tetkik ve Arama Dergisi 142(142): 1-23.
  • Duman TY, Emre Ö, Özalp S, Elmacı H (2011). 1: 250,000 Scale Active Fault Map Series of Turkey, Aydın (NJ 35-11) Quadrangle. General Directorate of Mineral Reserach and Exploration Publications. Ankara, Turkey: General Directorate of Mineral Research and Exploration.
  • Dumont JF, Uysal Ş, Şimşek Ş, Karamanderesi IH, Letouzey J (1979). Formation of the grabens in southwestern Anatolia, Maden Tetkik ve Arama Dergisi. Citeseer 92: 92.
  • Dürr SH (1975). Über Alter und geotektonische Stellung des Menderes-Kristallins/SW-Anatolien und seine Aequivalente in der mittleren Aegaeis (in German).
  • Elitez İ, Yaltırak C, Aktuğ B (2016). Extensional and compressional regime driven left-lateral shear in southwestern Anatolia (eastern Mediterranean): The Burdur-Fethiye Shear Zone, Tectonophysics. Elsevier 688: 26-35.
  • Emre Ö, Duman TY, Özalp S, Elmacı H, Olgun Ş et al. (2013). Açıklamalı Türkiye Diri Fay Haritası Ölçek 1/1.125.000. Maden Tetkik ve Arama Genel Müdürlüğü Yayını. Ankara, Turkey: Maden Tetkik ve Arama Genel Müdürlüğü (in Turkish).
  • England P, Houseman G, Nocquet J (2016). Constraints from GPS measurements on the dynamics of deformation in Anatolia and the Aegean, Journal of Geophysical Research: Solid Earth. Wiley Online Library 121(12): 8888-8916.
  • Evirgen MM, Ataman G (1982). Etude du métamorphisme de la zone centrale du Massif de Menderes; Isogrades, pressions et température, Bulletin de la Société Géologique de France. Societe Geologique de France Paris, France 7(2): 309-319.
  • Forte AM, Whipple KX (2018). Criteria and tools for determining drainage divide stability, Earth and Planetary Science Letters. Elsevier 493: 102-117.
  • Fortes AM (2019). The topographic analysis kit (TAK) for TopoToolbox. Earth Surface Dynamics 7(1): 87.
  • Ganas A, White K (1996). Neotectonic fault segments and footwall geomorphology in Eastern Central Greece from Landsat TM data, Geological Society of Greece Special Publication 6: 169- 175.
  • Giaconia F, Booth-Rea G, Martínez-Martínez JM, Azañón JM, Pérez-Peña JV et al. (2012). Geomorphic evidence of active tectonics in the Sierra Alhamilla (eastern Betics, SE Spain), Geomorphology. Elsevier 145: 90-106.
  • Goudie AS (2006). The Schmidt Hammer in geomorphological research. Progress in Physical Geography: Earth and Environment 30 (6): 703-718. doi: 10.1177/0309133306071954
  • Gürer ÖF, Sanğu E, Özburan M, Gürbüz A, Sarica-Filoreau N (2013). Complex basin evolution in the Gökova Gulf region: implications on the Late Cenozoic tectonics of southwest Turkey. International Journal of Earth Sciences 102(8): 2199- 2221.
  • Gürer ÖF, Yılmaz Y (2002). Geology of the Ören and surrounding regions, SW Turkey. Turkish Journal of Earth Sciences 11: 2-18.
  • Hack JT (1973). Stream-profile analysis and stream-gradient index, Journal of Research of the us Geological Survey 1(4): 421-429.
  • Hall J, Aksu AE, Elitez I, Yaltırak C, Çifçi G et al. (2014). The Fethiye– Burdur Fault Zone: a component of upper plate extension of the subduction transform edge propagator fault linking Hellenic and Cyprus Arcs, Eastern Mediterranean, Tectonophysics. Elsevier 635: 80-99.
  • El Hamdouni R, Irigaray C, Fernández T, Chacón J, Keller EA (2008). Assessment of relative active tectonics, southwest border of the Sierra Nevada (southern Spain). Geomorphology96(1-2): 150- 173.
  • Harkins N, Kirby E, Heimsath A, Robinson R, Reiser U et al. (2007). Transient fluvial incision in the headwaters of the Yellow River, northeastern Tibet, China. Journal of Geophysical Research: Earth Surface 112(F3).
  • Haviv I, Enzel Y, Whipple KX, Zilberman E, Matmon A et al. (2010). Evolution of vertical knickpoints (waterfalls) with resistant caprock: insights from numerical modeling. Journal of Geophysical Research: Earth Surface 115(F3).
  • Hetzel R, Romer RL, Candan O, Passchier CW (1998). Geology of the Bozdag area, central Menderes massif, SW Turkey: PanAfrican basement and Alpine deformation. Geologische Rundschau87 (3): 394-406.
  • Hilley GE, Arrowsmith JR (2008). Geomorphic response to uplift along the Dragon’s Back pressure ridge, Carrizo Plain, California, Geology. Geological Society of America 36(5): 367- 370.
  • Hovius N (2000). Macroscale process systems of mountain belt erosion, in Geomorphology and global tectonics. Hoboken, NJ, USA: John Wiley & Sons, pp. 77-105.
  • Howard AD (1994). A detachment-limited model of drainage basin evolution. Water ResourcesResearch 30(7): 2261-2285.
  • Howard AD, Dietrich WE, Seidl MA (1994). Modeling fluvial erosion on regional to continental scales. Journal of Geophysical Research: Solid Earth 99(B7): 13971-13986.
  • Howard AD, Kerby G (1983). Channel changes in badlands. Geological Society of America Bulletin 94(6): 739-752.
  • Hurst MD, Mudd SM, Yoo K, Attal M, Walcott Ret al. (2013). Influence of lithology on hillslope morphology and response to tectonic forcing in the northern Sierra Nevada of California, Journal of Geophysical Research: Earth Surface 118(2): 832- 851.
  • Jackson J, Leeder M (1994). Drainage systems and the development of normal faults: an example from Pleasant Valley, Nevada, Journal of Structural Geology 16 (8): 1041-1059.
  • Kahle HG, Cocard M, Peter Y, Geiger A, Reilinger Ret al. (2000). GPS-derived strain rate field within the boundary zones of the Eurasian, African, and Arabian Plates. Journal of Geophysical Research: Solid Earth 105 (B10): 23353-23370.
  • Karabacak V (2016). Seismic damage in the Lagina sacred area on the Mugla Fault: a key point for the understanding of the obliquely situated faults of western Anatolia. Journal of Seismology 20 (1): 277-289.
  • Kaymakcı N, Langereis C, Özkaptan M, Özacar AA, Gülyüz E et al. (2018). Paleomagnetic evidence for upper plate response to a STEP fault, SW Anatolia. Earth and Planetary Science Letters 498: 101-115.
  • Keller EA, Pinter N (2002). Active Tectonics, Earthquake Uplift and Landscape. Upper Saddle River, NJ, USA: Prentice Hall.
  • Kent E, Boulton SJ, Whittaker AC, Stewart IS, Alçiçek MC (2017). Normal fault growth and linkage in the Gediz (Alaşehir) Graben, Western Turkey, revealed by transient river longprofiles and slope-break knickpoints. Earth Surface Processes and Landforms 42(5): 836-852.
  • Kim Y-S, Sanderson DJ (2005). The relationship between displacement and length of faults: a review.Earth-Science Reviews 68(3–4): 317-334.
  • Kiratzi A, Louvari E (2003). Focal mechanisms of shallow earthquakes in the Aegean Sea and the surrounding lands determined by waveform modelling: a new database. Journal of Geodynamics 36(1-2): 251-274.
  • Kirby E, Whipple K (2001). Quantifying differential rock-uplift rates via stream profile analysis. Geology 29(5): 415-418.
  • Kirby E, Whipple KX (2012). Expression of active tectonics in erosional landscapes. Journal of Structural Geology 44: 54-75.
  • Louderback GD (1904). Basin Range structure of the Humboldt region. Bulletin of the Geological Society of America 15(1): 289-346.
  • McCalpin JP (2009). Paleoseismology. Cambridge, MA, USA: Academic Press.
  • McClay KR (2013). The Mapping of Geological Structures. Hoboken, NJ, USA: John Wiley & Sons.
  • McKenzie D (1972). Active tectonics of the Mediterranean region. Geophysical Journal International 30 (2): 109-185.
  • McKenzie D (1978). Active tectonics of the Alpine—Himalayan belt: the Aegean Sea and surrounding regions. Geophysical Journal International 55(1): 217-254.
  • Meulenkamp JE, Wortel MJ, Van Wamel WA, Spakman W, Strating EH(1988). On the Hellenic subduction zone and the geodynamic evolution of Crete since the late Middle Miocene. Tectonophysics 146(1-4): 203-215.
  • Mudd SM, Attal M, Milodowski DT, Grieve SW, Valters DA (2014). A statistical framework to quantify spatial variation in channel gradients using the integral method of channel profile analysis. Journal of Geophysical Research: Earth Surface 119(2): 138-152.
  • Ohmori H (1993). Changes in the hypsometric curve through mountain building resulting from concurrent tectonics and denudation. Geomorphology 8(4): 263-277.
  • Okay Aİ (1989). Geology of the Menderes Massif and the Lycian Nappes south of Denizli, western Taurides.Bulletin of the Mineral Research and Exploration 109: 37-51.
  • Oral BM, Reilinger R, Toksöz MN, King RW, Barka A et al. (1995). Global positioning system offers evidence of plate motions in eastern Mediterranean, EOS, Transactions American Geophysical Union. Wiley Online Library 76(2): 9-11.
  • Ouchi S (1985). Response of alluvial rivers to slow active tectonic movement. Geological Society of America Bulletin 96(4): 504- 515.
  • Özbek A, Gül M, Karacan E, Alca Ö (2018). Anisotropy effect on strengths of metamorphic rocks. Journal of Rock Mechanics and Geotechnical Engineering 10(1): 164-175.
  • Özer S, Sözbilir H (2003). Presence and tectonic significance of Cretaceous rudist species in the so-called Permo-Carboniferous Göktepe Formation, central Menderes metamorphic massif, western Turkey. International Journal of Earth Sciences 92(3): 397-404.
  • Öztürk A, Koçyiğit A (1983). Menderes grubu kayalarının temel-örtü ilişkisine yapısal bir yak laşım (Selimiye-Muğla). Türkiye Jeoloji Kurumu Bülteni 26(2): 99-106.
  • Pan B, Pang H, Zhang D, Guan Q, Wang L et al. (2015). Sediment grain-size characteristics and its source implication in the Ningxia–Inner Mongolia sections on the upper reaches of the Yellow River. Geomorphology 246: 255-262.
  • Pantosti D, Schwartz DP, Valensise G (1993). Paleoseismology along the 1980 surface rupture of the Irpinia fault: implications for earthquake recurrence in the southern Apennines, Italy. Journal of Geophysical Research: Solid Earth 98(B4): 6561-6577.
  • Pérez-Peña JV, Azañón JM, Azor A, Tuccimei P, Della Seta M et al. (2009). Quaternary landscape evolution and erosion rates for an intramontane Neogene basin (Guadix–Baza basin, SE Spain). Geomorphology 106(3-4): 206-218.
  • Pérez-Peña JV, Azor A, Azañón JM, Keller EA (2010). Active tectonics in the Sierra Nevada (Betic Cordillera, SE Spain): Insights from geomorphic indexes and drainage pattern analysis, Geomorphology 119(1-2): 74-87.
  • Pérez-Peña JV, Azañón JM, Azor A (2009). CalHypso: an ArcGIS extension to calculate hypsometric curves and their statistical moments. Applications to drainage basin analysis in SE Spain. Computers & Geosciences 35(6): 1214-1223.
  • Pérez-Peña JV, Azañón JM, Azor A, Delgado J, González-Lodeiro F (2009). Spatial analysis of stream power using GIS: SLk anomaly maps. Earth Surface Processes and Landforms 34 (1): 16-25.
  • Perron JT, Royden L (2013). An integral approach to bedrock river profile analysis. Earth Surface Processes and Landforms 38(6): 570-576.
  • Le Pichon X, Chamot-Rooke N, Lallemant S, Noomen R, Veis G (1995). Geodetic determination of the kinematics of central Greece with respect to Europe: implications for eastern Mediterranean tectonics. Journal of Geophysical Research: Solid Earth 100(B7): 12675-12690.
  • Le Pichon X, Angelier J (1979). The Hellenic arc and trench system: a key to the neotectonic evolution of the eastern Mediterranean area. Tectonophysics 60(1-2): 1-42.
  • Picotti V, Ponza A, Pazzaglia FJ (2009). Topographic expression of active faults in the foothills of the Northern Apennines, Tectonophysics. Elsevier 474(1-2): 285-294.
  • Pike RJ, Wilson SE (1971). Elevation-relief ratio, hypsometric integral, geomorphic area-altitude analysis. Geological Society of America Bulletin 82(4): 1079-1084.
  • Pueyo EL (2010). Evaluating the paleomagnetic reliability in fold and thrust belt studies. Trabajos de Geologia30: 145-154.
  • Reilinger R, McClusky S, Vernant P, Lawrence S, Ergintav Set al. (2006). GPS constraints on continental deformation in the Africa-Arabia-Eurasia continental collision zone and implications for the dynamics of plate interactions. Journal of Geophysical Research: Solid Earth 111(B5).
  • Rockwell TK, Keller EA, Johnson DL (1985). Tectonic geomorphology of alluvial fans and mountain fronts near Ventura, California, in Tectonic Geomorphology. Proceedings of the 15th Annual Geomorphology Symposium. Boston, MA, USA: Allen and Unwin Publishers, pp. 183-207.
  • Royden LH, Perron JT (2013). Solutions of the stream power equation and application to the evolution of river longitudinal profiles. Journal of Geophysical Research: Earth Surface 118(2): 497- 518.
  • Sağlam Selçuk A (2016). Evaluation of the relative tectonic activity in the eastern Lake Van basin, East Turkey. Geomorphology 270: 9-21.
  • Satir M, Friedrichsen H (1986). The origin and evolution of the Menderes Massif, W-Turkey: a rubidium/strontium and oxygen isotope study. Geologische Rundschau 75(3): 703-714.
  • Schumm SA, Dumont JF, Holbrook JM (2002).Active tectonics and alluvial rivers. Cambridge, UK: Cambridge University Press.
  • Schwanghart W, Scherler D (2014). TopoToolbox 2–MATLAB-based software for topographic analysis and modeling in Earth surface sciences. Earth Surface Dynamics2(1): 1-7.
  • Selby MJ (1980). A rock mass strength classification for geomorphic purposes: with tests from Antarctica and New Zealand. Zeitschrift für Geomorphologie Stuttgart 24(1): 31-51.
  • Şaroglu F, Boray A, Emre O (1987). Active faults of Turkey. General Directorate of the Mineral Research and Exploration1(2). Ankara, Turkey: General Directorate of the Mineral Research and Exploration.
  • Şengör AMC (1980). Türkiye’nin neotektoniğinin esasları. Türkiye Jeoloji Kurumu yayını, 40. Ankara, Turkey: Türkiye Jeoloji Kurumu (in Turkish).
  • Şengör AMC (1987). Cross-faults and differential stretching of hanging walls in regions of low-angle normal faulting: examples from western Turkey. Geological Society, London, Special Publications 28(1): 575-589.
  • Şengör AMC, Tüysüz O, Imren C, Sakınç M, Eyidoğan H, Görüret al. (2005). The North Anatolian fault: a new look. Annual Review of Earth Planetary Sciences 33: 37-112.
  • Şengör AMC, Özeren MS, Keskin M, Sakınç M, Özbakır ADet al. (2008). Eastern Turkish high plateau as a small Turkictype orogen: implications for post-collisional crust-forming processes in Turkic-type orogens. Earth-Science Reviews 90(1- 2): 1-48.
  • Şengör AMC, Grall C, İmren C, Le Pichon X, Görür Net al. (2014). The geometry of the North Anatolian transform fault in the Sea of Marmara and its temporal evolution: implications for the development of intracontinental transform faults. Canadian Journal of Earth Sciences 51(3): 222-242.
  • Şengör AMC, Görür N, Şaroğlu F (1985). Strike-slip faulting and related basin formation in zones of tectonic escape: Turkey as a case study. Special Publications of SEPM.
  • Şengör AMC, Satir M, Akkök R (1984). Timing of tectonic events in the Menderes Massif, western Turkey: Implications for tectonic evolution and evidence for Pan-African basement in Turkey. Tectonics 3(7): 693-707.
  • Şengör AMC, Yilmaz Y (1981). Tethyan evolution of Turkey: a plate tectonic approach. Tectonophysics 75 (3-4): 181-241.
  • Şengör AMC, Zabcı C (2019). The north Anatolian fault and the north Anatolian shear zone.In: Kuzucuoğlu C, Çiner A, Kazancı N (editors). Landscapes and Landforms of Turkey. World Geomorphological Landscapes. Cham, Switzerland:Springer, pp. 481-494. doi: 10.1007/978-3-030-03515-0_27
  • Silva PG, Goy JL, Zazo C, Bardajı T (2003). Fault-generated mountain fronts in southeast Spain: geomorphologic assessment of tectonic and seismic activity. Geomorphology 50(1-3): 203- 225.
  • Snyder NP, Whipple KX, Tucker GE, Merritts DJ (2000). Landscape response to tectonic forcing: digital elevation model analysis of stream profiles in the Mendocino triple junction region, northern California. Geological Society of America Bulletin 112(8): 1250-1263.
  • Strahler AN (1952). Hypsometric (area-altitude) analysis of erosional topography. Geological Society of America Bulletin 63(11): 1117-1142.
  • Strak V, Dominguez S, Petit C, Meyer B, Loget N (2011). Interaction between normal fault slip and erosion on relief evolution: Insights from experimental modelling. Tectonophysics 513(1- 4): 1-19.
  • Topal S, Keller E, Bufe A, Koçyiğit A (2016). Tectonic geomorphology of a large normal fault: Akşehir fault, SW Turkey. Geomorphology 259: 55-69.
  • Tsimi C, Ganas A, Ferrier G, Drakatos G, Pope RJ et al. (2007). Morphotectonics of the Sfakia normal fault, southwestern Crete, Greece.In: Proceedings of 8th Pan-Hellenic Geographical Conference; Lefkoşa, Turkish Republic of Northern Cyprus. pp. 4-7.
  • Tsimi C, Ganas A (2015). Using the ASTER global DEM to derive empirical relationships among triangular facet slope, facet height and slip rates along active normal faults. Geomorphology 234: 171-181.
  • Tur H, Yaltırak C, Elitez İ, Sarıkavak KT (2015). Pliocene–Quaternary tectonic evolution of the Gulf of Gökova, southwest Turkey. Tectonophysics 638: 158-176.
  • Vanacker V, Von Blanckenburg F, Govers G, Molina A, Campforts Bet al. (2015). Transient river response, captured by channel steepness and its concavity. Geomorphology 228: 234-243.
  • Wallace RE (1978). Geometry and rates of change of fault-generated range fronts, north-central Nevada.Journal of Research of the U. S. Geological Survey 6 (5): 637-650.
  • Wessel P, Smith WH, Scharroo R, Luis J, Wobbe F (2013). Generic mapping tools: improved version released, Eos, Transactions American Geophysical Union 94(45): 409-410.
  • Whipple KX (2004). Bedrock rivers and the geomorphology of active orogens. Annual Review of Earth Planetary Sciences32: 151- 185.
  • Whipple KX, Tucker GE (1999). Dynamics of the stream-power river incision model: Implications for height limits of mountain ranges, landscape response timescales, and research needs. Journal of Geophysical Research: Solid Earth 104(B8): 17661- 17674.
  • Willett SD, McCoy SW, Perron JT, Goren L, Chen CY (2014). Dynamic reorganization of river basins. Science 343(6175).
  • Wobus C, Heimsath A, Whipple K, Hodges K (2005). Active outof-sequence thrust faulting in the central Nepalese Himalaya. Nature 434(7036): 1008-1011.
  • Wobus C, Whipple KX, Kirby E, Snyder N, Johnson Jet al. (2006). Tectonics from topography: procedures, promise, and pitfalls. Geological Society of America Special Papers 398: 55.
  • Wobus CW, Crosby BT, Whipple KX (2006). Hanging valleys in fluvial systems: Controls on occurrence and implications for landscape evolution. Journal of Geophysical Research: Earth Surface 111(F2).
  • Wobus CW, Hodges KV, Whipple KX (2003). Has focused denudation sustained active thrusting at the Himalayan topographic front? Geology 31(10): 861-864.
  • Yilmaz Y, Genç ŞC, Gürer F, Bozcu M, Yilmaz Ket al. (2000). When did the western Anatolian grabens begin to develop? Geological Society of LondonSpecial Publications173(1): 353-384.
  • Yıldırım C (2014). Relative tectonic activity assessment of the Tuz Gölü fault zone; Central Anatolia, Turkey. Tectonophysics 630: 183-192.
  • Zondervan JR, Stokes M, Boulton SJ, Telfer MW, Mather AE (2020). Rock strength and structural controls on fluvial erodibility: implications for drainage divide mobility in a collisional mountain belt. Earth and Planetary Science Letters 538: 116221.
  • Zuchiewicz W, McCalpinJP (2000). Geometry of faceted spurs on an active normal fault: case study of the Central Wasatch Fault, Utah, USA.Annales Societatis Geologorum Poloniae 70: 231- 249.