Statistical Evaluation of Classification Diagrams for Altered Igneous Rocks

The International Union of Geological Sciences (IUGS) has proposed recommendations for the classification of relatively fresh volcanic rocks, but with no specific instructions for altered volcanic rocks, other than discouraging the use of the total alkalis versus silica diagram. The Nb/Y-Zr/TiO2 diagram has been in use for the classification of altered rocks now for over 30 years. Recently (during 2007) another diagram (Co-Th) has been proposed to replace this old diagram, particularly for altered arc rocks. Using an extensive database of all kinds of relatively fresh rocks from four tectonic settings (island arc, continental rift, ocean island, and mid-ocean ridge), as well as from three settings excluding island arc, we carried out an objective evaluation of the old Nb/Y-Zr/TiO2 diagram for rock classification. Similarly, for the evaluation of the new Co-Th diagram, an extensive database of similar rocks from island arcs, the Andean active continental margin, continental rifts, ocean islands, and the Mexican Volcanic Belt, was used. Statistical parameters of correct classification or success rate and minimum misclassification defined in this work, respectively, were used to evaluate these diagrams. Our results of the quantification of these parameters showed that none of these diagrams seems to work precisely for the classification of fresh rocks. It is therefore difficult to imagine that they would work well for the classification of altered rocks. Thus, there is an urgent need to apply correct statistical methodology for handling compositional data in proposing new classification diagrams that could provide classification and nomenclature to altered volcanic rocks fully consistent with the IUGS nomenclature for fresh rocks.

Statistical Evaluation of Classification Diagrams for Altered Igneous Rocks

The International Union of Geological Sciences (IUGS) has proposed recommendations for the classification of relatively fresh volcanic rocks, but with no specific instructions for altered volcanic rocks, other than discouraging the use of the total alkalis versus silica diagram. The Nb/Y-Zr/TiO2 diagram has been in use for the classification of altered rocks now for over 30 years. Recently (during 2007) another diagram (Co-Th) has been proposed to replace this old diagram, particularly for altered arc rocks. Using an extensive database of all kinds of relatively fresh rocks from four tectonic settings (island arc, continental rift, ocean island, and mid-ocean ridge), as well as from three settings excluding island arc, we carried out an objective evaluation of the old Nb/Y-Zr/TiO2 diagram for rock classification. Similarly, for the evaluation of the new Co-Th diagram, an extensive database of similar rocks from island arcs, the Andean active continental margin, continental rifts, ocean islands, and the Mexican Volcanic Belt, was used. Statistical parameters of correct classification or success rate and minimum misclassification defined in this work, respectively, were used to evaluate these diagrams. Our results of the quantification of these parameters showed that none of these diagrams seems to work precisely for the classification of fresh rocks. It is therefore difficult to imagine that they would work well for the classification of altered rocks. Thus, there is an urgent need to apply correct statistical methodology for handling compositional data in proposing new classification diagrams that could provide classification and nomenclature to altered volcanic rocks fully consistent with the IUGS nomenclature for fresh rocks.

___

  • AGRAWAL, S. 1999. Geochemical discrimination diagrams: a simple way of replacing eye-fitted boundaries with probability based classifier surfaces. Journal of the Geological Society of India 54, 335−346.
  • AGRAWAL, S. & VERMA, S.P. 2007. Comment on ‘Tectonic classification of basalts with classification trees’ by Pieter Vermeesch (2006). Geochimica et Cosmochimica Acta 71, 3388−3390.
  • AGRAWAL, S., GUEVARA, M. & VERMA, S.P. 2004. Discriminant analysis applied to establish major-element field boundaries for tectonic varieties of basic rocks. International Geology Review 46, 575−594.
  • AGRAWAL, S., GUEVARA, M. & VERMA, S.P. 2008. Tectonic discrimination of basic and ultrabasic rocks through log- transformed ratios of immobile trace elements. International Geology Review 50, 1057−1079.
  • AHMAD, T., TANAKA, T., SACHAN, H.K., ASAHARA, Y., ISLAM, R. & KHANNA, P.P. 2008. Geochemical and isotopic constraints on the age and origin of the Nidar Ophiolitic Complex, Ladakh, India: implications for the Neo-Tethyan subduction along the Indus suture zone. Tectonophysics 451, 206−224.
  • AITCHISON, J. 1984. Reducing the dimensionality of compositional data set. Mathematical Geology 16, 617−635.
  • AITCHISON, J. 1986. The Statistical Analysis of Compositional Data. Chapman and Hall, London New York.
  • AITCHISON, J. 1989. Measures of location of compositional data sets. Mathematical Geology 21, 787−790.
  • ARMSTRONG-ALTRIN, J.S. 2009. Provenance of felsic beach sands from Cazones, Acapulco and Bahia Kino beaches, Mexico. Revista Mexicana de Ciencias Geológicas 26, 764−782.
  • BAĞCI, U., PARLAK, O. & HÖCK, V. 2008. Geochemistry and tectonic environment of diverse magma generations forming the crustal units of the Kızıldağ (Hatay) ophiolite, southern Turkey. Turkish Journal of Earth Sciences 17, 43−71.
  • BARNETT, V. & LEWIS, T. 1994. Outliers in Statistical Data. John Wiley & Sons, Chichester.
  • CASTRELLON-URIBE, J., CUEVAS-ARTEAGA, C. & TRUJILLO-ESTRADA, A. 2008. Corrosion monitoring of stainless steel 304L in lithium bromide aqueous solution using transmittance optical detection technique. Optics and Lasers in Engineering 46, 469−476.
  • CHAYES, F. 1960. On correlation between variables of constant sum. Journal of Geophysical Research 65, 4185−4193.
  • CHAYES, F. 1965. Classification in a ternary-diagram by means of discriminant functions. American Mineralogist 50, 1618−1633.
  • CHAYES, F. 1978. Ratio Correlation. A Manual for Students of Petrology and Geochemistry. The University of Chicago Press, Chicago and London.
  • DÍAZ-GONZÁLEZ, L., SANTOYO, E. & REYES-REYESJ. 2008. Tres nuevos geotermómetros mejorados de Na/K usando herramientas computacionales y geoquimiométricas: aplicación a la predicción de temperaturas de sistemas geotérmicos. Revista Mexicana de Ciencias Geológicas 25, 465−482.
  • FLOYD, P.A. & WINCHESTER, J.A. 1975. Magma type and tectonic setting discrimination using immobile elements. Earth and Planetary Science Letters 27, 211−218.
  • FLOYD, P.A. & WINCHESTER, J.A. 1978. Identification and discrimination of altered and meta-morphosed volcanic rocks using immobile elements. Chemical Geology 21, 291−306.
  • FOURNIER, R.O. & POTTER II, R.W. 1982. A revised and expanded silica (quartz) geothermometer. Geothermal Resources Council Bulletin 11, 3−12.
  • GLADKOCHUB, D.P., MAZUKABZOV, A.M., DONSKAYA, T.V., DEWAELE, B., STANEVICH, M. & PISAREVSKY, S.A. 2008. The age and origin of volcanics in the Riphean section of the Siberian craton (western Baikal area). Russian Geology and Geophysics 49, 749−758.
  • GÖKTEN, E. & FLOYD, P.A. 2007. Stratigraphy and geochemistry of pillow basalts within the ophiolitic melange of the İzmir- Ankara-Erzincan suture zone: implications for the geotectonic character of the northern branch of Neotethys. International Journal of Earth Sciences 96, 725−741.
  • GÓMEZ-ARIAS, E., ANDAVERDE, J., SANTOYO, E. & URQUIZA, G. 2009. Determinación de la viscosidad y su incertidumbre en fluidos de perforación usados en la construcción de pozos geotérmicos: aplicación en el campo de Los Humeros, Puebla, México. Revista Mexicana de Ciencias Geológicas 26, 516−529.
  • GONZÁLEZ-MÁRQUEZ, L.C. & HANSEN, A.M. 2009. Adsorción y mineralización de atrazina y relación con parámetros de suelos del DR 063 Guasave, Sinaloa. Revista Mexicana de Ciencias Geológicas 26, 587−599.
  • GONZÁLEZ-RAMÍREZ, R., DÍAZ-GONZÁLEZ, L. & VERMA, S.P. 2009. Eficiencia relativa de las 33 pruebas de discordancia para valores desviados basada en datos geoquímicos de materiales de referencia. Revista Mexicana de Ciencias Geológicas 26, 501−515.
  • GÜRSÜ, S. 2008. Petrogenetic and tectonic significance of rift-related pre-Early Cambrian mafic dikes, Central Taurides, Turkey. International Geology Review 50, 895−913.
  • HASTIE, A.R., KERR, A.C., PEARCE, J.A. & MITCHELL, S.F. 2007. Classification of altered volcanic island rocks using immobile trace elements: development of the Th-Co discrimination diagram. Journal of Petrology 48, 2341−2357.
  • JAFARZADEH, M. & HOSSEINI-BARZI, M. 2008. Petrography and geochemistry of Ahwaz Sandstone Member of Asmari Formation, Zagros, Iran: implications on provenance and tectonic setting. Revista Mexicana de Ciencias Geológicas 25, 247−260.
  • KADİR, S., ÖNEN-HALL, A.P., AYDIN, S.N., YAKICIER, C., AKARSU, N. & TUNCER, M. 2008. Environmental effect and genetic influence: a regional cancer predisposition survey in the Zonguldak region of Northwest Turkey. Environmental Geology 54, 391−409.
  • KESKİN, M., GENÇ, Ş.C. & TÜYSÜZ, O. 2008. Petrology and geochemistry of post-collisional Middle Eocene volcanic units in North-Central Turkey: evidence for magma generation by slab breakoff following the closure of the Northern Neotethys Ocean. Lithos 104, 267−305.
  • KALMAR, J. & KOVACS-PALFFY, P. 2008. Geochemical study of leptinites from Stejera (Romania). Carpathian Journal of Earth and Environmental Sciences 3, 49−64.
  • KAYGUSUZ, A., SIEBEL, W., ŞEN, C. & SATIR, M. 2008. Petrochemistry and petrology of I-type granitoids in an arc setting: the composite Torul pluton, Eastern Pontides, NE Turkey. International Journal of Earth Sciences 97, 739−764.
  • LEBAS, M.J. 2000. IUGS reclassification of the high-Mg and picritic volcanic rocks. Journal of Petrology 41, 1467−1470.
  • LEBAS, M.J., LEMAITRE, R.W., STRECKEISEN, A. & ZANETTIN, B. 1986. A chemical classification of volcanic rocks based on the total alkali-silica diagram. Journal of Petrology 27, 745−750.
  • LEMAITRE, R.W., STRECKEISEN, A., ZANETTIN, B., LEBAS, M.J., BONIN, B., BATEMAN, P., BELLIENI, G., DUDEK, A., SCHMID, R., SORENSEN, H. & WOOLLEY, A.R. 2002. Igneous Rocks. A Classification and Glossary of Terms: Recommendations of the International Union of Geological Sciences Subcommission of the Systematics of Igneous Rocks. Cambridge University Press, Cambridge.
  • MADHAVARAJU, J. & LEE, Y.I. 2009. Geochemistry of the Dalmiapuram Formation of the Uttatur Group (Early Cretaceous), Cauvery basin, southeastern India: Implications on Provenance and Paleo-redox conditions. Revista Mexicana de Ciencias Geológicas 26, 380−394.
  • MARROQUÍN-GUERRA, S.G., VELASCO-TAPIA, F. & DÍAZ-GONZÁLEZ, L. 2009. Evaluación estadística de Materiales de Referencia Geoquímica del Centre de Recherches Pétrographiques et Géochimiques (Francia) aplicando un esquema de detección y eliminación de valores desviados y su posible aplicación en el control de calidad de datos geoquímicas. Revista Mexicana de Ciencias Geológicas 26, 530−542.
  • MONDAL, M.E.A., CHANDRA, R. & AHMAD, T. 2008. Precambrian mafic magmatism in Bundelkhand craton. Journal of the Geological Society of India 72, 113−122.
  • NAGARAJAN, R., SIAL, A.N., ARMSTRONG-ALTRIN, J.S., MADHAVARAJU, J. & NAGENDRA, R. 2008. Carbon and oxygen isotope geochemistry of Neoproterozoic limestones of the Shahabad Formation, Bhima basin, Karnataka, southern India. Revista Mexicana de Ciencias Geológicas 25, 225−235.
  • NARDI, L.V.S., PLA-CID, J., BITENCOURT, M.D. & STABEL, L.Z. 2008. Geochemistry and petrogenesis of post-collisional ultrapotassic syenites and granites from southernmost Brazil: the Piquiri Syenite Massif. Anais da Academia Brasileira de Ciencias 80, 353−371.
  • OBEIDAT, M.M., AHMAD, F.Y., HAMOURI, N.A.A., MASSADEH, A.M. & ATHAMNEH, F.S. 2008. Assessment of nitrate contamination of karst springs, Bani Kanana, Northern Jordan. Revista Mexicana de Ciencias Geológicas 25, 426−437.
  • OSTROOUMOV, M., TARAN, Y., ARELLANO-JIMÉNEZ, M., PONCE, A. & REYES-GASGA, J. 2009. Colimaite, K3VS4 – a new potassium- vanadium sulfide mineral from the Colima volcano, State of Colima (Mexico). Revista Mexicana de Ciencias Geológicas 26, 600−608.
  • PALABIYIK, Y. & SERPEN, U. 2008. Geochemical assessment of Simav geothermal field, Turkey. Revista Mexicana de Ciencias Geológicas 25, 408−425.
  • PANDARINATH, K. 2009a. Clay minerals in SW Indian continental shelf sediments cores as indicators of provenance and paleomonsoonal conditions: a statistical approach. International Geology Review 51, 145−165.
  • PANDARINATH, K. 2009b. Evaluation of geochemical sedimentary reference materials of the Geological Society of Japan (GSJ) by an objective outlier rejection statistical method. Revista Mexicana de Ciencias Geológicas 26, 638−646.
  • PANDARINATH, K., PUSHPARANI, D.E., TORRES-ALVARADO, I. & VERMA, S.P. 2006. X-ray diffraction analysis of hydrothermal minerals from the Los Azufres geothermal system, Mexico. International Geology Review 48, 174−190.
  • PANDARINATH, K., DUSKI, P., TORRES-ALVARADO, I.S. & VERMA, S.P. 2008. Element mobility during the hydrothermal alteration of rhyolitic rocks of the Los Azufres geothermal field, Mexico. Geothermics 37, 53−72.
  • PECCERILLO, A. & TAYLOR, S.R. 1976. Geochemistry of Eocene calc- alkaline volcanic rocks from the Kastamonu area, Northern Turkey. Contributions to Mineralogy and Petrology 58, 63−81.
  • RODRÍGUEZ-RÍOS, R. & TORRES-AGUILERA, J.M. 2009. Evolución petrológica y geoquímica de un vulcanismo bimodal oligocénico en el Campo Volcánico de San Luis Potosí (México). Revista Mexicana de Ciencias Geológicas 26,
  • SHEKHAWAT, L.S., PANDIT, M.K. & JOSHI, D.W. 2007. Geology and geochemistry of palaeoproterozoic low-grade metabasic volcanic rocks from Salumber area, Aravalli Supergroup, NW India. Journal of Earth System Science 116, 511−524.
  • SHETH, H.C. & MELLUSO, L. 2008. The Mount Pavagadh volcanic suite, Deccan Traps: Geochemical stratigraphy and magmatic evolution. Journal of Asian Earth Sciences 32, 5−21.
  • TORRES-ALVARADO, I.S. 2002. Chemical equilibrium in hydrothermal systems: the case of Los Azufres geothermal field, Mexico. International Geology Review 44, 639−652.
  • TORRES-ALVARADO, I.S., PANDARINATH, K., VERMA, S.P. & DULSKI, P. 2007. Mineralogical and geochemical effects due to hydrothermal alteration in the Los Azufres geothermal field, Mexico. Revista Mexicana de Ciencias Geológicas 24, 15−24.
  • VARGAS-RODRÍGUEZ, Y.M., GÓMEZ-VIDALES, V., VÁZQUEZ-LABASTIDA E., GARCÍA-BORQUEZ, A., AGUILAR-SAHAGUN, G., MURRIETA- SÁNCHEZ, H. & SALMON, M. 2008. Caracterización espectroscópica, química y morfológica y propiedades superficiales de una montmorillonita Mexicana. Revista Mexicana de Ciencias Geológicas 25, 135−144.
  • VASCONCELOS-F.M., VERMA, S.P. & RODRÍGUEZ-G., J.F. 1998. Discriminación tectónica: nuevo diagrama Nb-Ba para arcos continentales, arcos insulares, ‘rifts’ e islas oceánicas en rocas máficas. Boletín de la Sociedad Española de Mineralogía 21, 129−146.
  • VASCONCELOS-F.M., VERMA, S.P. & VARGAS-B., R.C. 2001. Diagrama Ti-V: una nueva propuesta de discriminación para magmas básicos en cinco ambientes tectónicos. Revista Mexicana de Ciencias Geológicas 18, 162−174.
  • VATTUONE, M.E., LEAL, P.R., CROSTA, S., BERBEGLIA, Y., GALLEGOS, E. & MARTÍNEZ-DOPICO, C. 2008. Paragénesis de zeolitas alcalinas en un afloramiento de basaltos olivínicos amigdaloides de Junín de Los Andes, Neuquén, Patagonia, Argentina. Revista Mexicana de Ciencias Geológicas 25, 483−493.
  • VERMA, S.P. 1997. Estado actual de los diagramas de clasificación magmática y de discriminación tectónica. Actas INAGEQ 3, 49−78.
  • VERMA, M.P. 2000a. Revised quartz solubility temperature dependence equation along the water-vapor saturation curve. Proceedings World Geothermal Congress, Kyushu-Tohoku, Japan, 1927−1932.
  • VERMA, S.P. 2000b. Geochemistry of the subducting Cocos plate and the origin of subduction-unrelated mafic volcanism at the volcanic front of the central Mexican Volcanic Belt. In: DELGADO-GRANADOS, H., AGUIRRE-DÍAZ, G. & STOCK, J. M. (eds), Cenozoic Tectonics and Volcanism of Mexico. Geological Soceity of America, Geological Society of America Special Paper 334, 195−222.
  • VERMA, S.P. 2002. Absence of Cocos plate subduction-related basic volcanism in southern Mexico: a unique case on Earth? Geology 30, 1095−1098.
  • VERMA, S.P. 2004. Solely extension-related origin of the eastern to west-central Mexican Volcanic Belt (Mexico) from partial melting inversion model. Current Science 86, 713−719.
  • VERMA, S.P. 2006. Extension related origin of magmas from a garnet- bearing source in the Los Tuxtlas volcanic field, Mexico. International Journal of Earth Sciences 95, 871−901.
  • VERMA, S.P. 2009a. Continental rift setting for the central part of the Mexican Volcanic Belt: A Statistical Approach. The Open Geology Journal 3, 8−29.
  • VERMA, S.P. 2009b. Evaluation of polynomial regression models for the Student t and Fisher F critical values, the best interpolation equations from double and triple natural logarithm transformation of degrees of freedom up to 1000, and their applications to quality control in science and engineering. Revista Mexicana de Ciencias Geológicas 26, 79−92.
  • VERMA, S.P. 2010. Statistical evaluation of bivariate, ternary and discriminant function tectonomagmatic discrimination diagrams. Turkish Journal of Earth Sciences 19, 185−238.
  • VERMA, S.P. & AGUILAR-Y-VARGAS, V.H. 1988. Bulk chemical composition of magmas in the Mexican Volcanic Belt (Mexico) and inapplicability of generalized arc-models. Chemie der Erde 48, 203−221.
  • VERMA, S.P. & QUIROZ-RUIZ, A. 2006a. Critical values for six Dixon tests for outliers in normal samples up to sizes 100, and applications in science and engineering. Revista Mexicana de Ciencias Geológicas 23, 133−161.
  • VERMA, S.P. & QUIROZ-RUIZ, A. 2006b. Critical values for 22 discordancy test variants for outliers in normal samples up to sizes 100, and applications in science and engineering. Revista Mexicana de Ciencias Geológicas 23, 302−319.
  • VERMA, S.P. & QUIROZ-RUIZ, A. 2008. Critical values for 33 discordancy test variants for outliers in normal samples for very large sizes of 1,000 to 30,000 and evaluation of different regression models for the interpolation and extrapolation of critical values. Revista Mexicana de Ciencias Geológicas 25, 369−381.
  • VERMA, S.P. & SANTOYO, E. 1997. New improved equations for Na/K, Na/Li and SiO2geothermometers by outlier detection and rejection. Journal of Volcanology and Geothermal Research 79, 9−23.
  • VERMA, S.P., GUEVARA, M. & AGRAWAL, S. 2006. Discriminating four tectonic settings: five new geochemical diagrams for basic and ultrabasic volcanic rocks based on log-ratio transformation of major-element data. Journal of Earth System Science 115, 485−528.
  • VERMA, S.P., TORRES-ALVARADO, I.S. & SOTELO-RODRÍGUEZ, Z.T. 2002. SINCLAS: standard igneous norm and volcanic rock classification system. Computers & Geosciences 28, 711−715.
  • VERMA, S.P., TORRES-ALVARADO, I.S. & VELASCO-TAPIA, F. 2003. A revised CIPW norm. Schweizerische Mineralogische und Petrographische Mitteilungen 83, 197−216.
  • VERMA, S.P., PANDARINATH, K. & SANTOYO, E. 2008a. SolGeo: A new computer program for solute geothermometers and its application to Mexican geothermal fields. Geothermic 37,
  • VERMA, S.P. & QUIROZ-RUIZ, A. & DÍAZ-GONZÁLEZ. L. 2008b Critical values for 33 discordancy test variants for outliers in normal samples up to sizes 1000, and applications in quality control in Earth Sciences. Revista Mexicana de Ciencias Geológicas 25, 82−96.
  • VERMA, S.P., DÍAZ-GONZÁLEZ. L. & GONZÁLEZ-RAMÍREZ, R. 2009a. Relative efficiency of single-outlier discordancy tests for processing geochemical data on reference materials and application to instrumental calibrations by a weighted least- squares linear regression model. Geostandards and Geoanalytical Research 33, 29−49.
  • VERMA, S.P., PANDARINATH, K., VELASCO-TAPIA, F. & RODRÍGUEZ-RÍOS, R. 2009b. Evaluation of the odd-even effect in limits of detection for electron microprobe analysis of natural minerals. Analytica Chimica Acta 638, 126–132.
  • WANG, X.C., LI, X.H., LI, W.X., LI, Z.X., LIU, Y., YANG, Y.H., LIANG, X.R. & TU, X.L. 2008. The Bikou basalts in the northwestern Yangtze block, South China: Remnants of 820−810 Ma continental flood basalts? Geological Society of America Bulletin 120, 1478−1492.
  • WINCHESTER, J.A. & FLOYD, P.A. 1976. Geochemical magma type discrimination: application to altered and metamorphosed basic igneous rocks. Earth and Planetary Science Letters 28, 459−469.
  • WINCHESTER, J.A. & FLOYD, P.A. 1977. Geochemical discrimination of different magma series and their differentiation products using immobile elements. Chemical Geology 20, 325−343.
  • YİĞİTBAŞ, E., WINCHESTER, J.A. & OTTLEY, C.J. 2008. The geochemistry and setting of the Demirci paragneisses of the Sunnice Massif, NW Turkey. Turkish Journal of Earth Sciences 17, 421−431.
  • ZHENG, Y., GU, L., TANG, X., LI, C., LIU, S. & CHANGZHI, W. 2008. Geological and geochemical signature of sea-floor alteration rocks of the highly metamorphosed Hongtoushan massive sulfide deposite, Liaoning. Acta Petrologica Sinica 24, 1928−1936.