Petrography and geochemistry of the Jajarm karst bauxite ore deposit, NE Iran: implications for source rock material and ore genesis

İran’ın kuzeydoğusunda bulunan Jajarm boksit yatağı İran’daki en büyük yataktır. Yatak, Triyas yaşlı Elika formasyonu ve Jura yaşlı Shemshak formasyonu arasında yüzeylemektedir. Yatak genel olarak dört farklı düzeyi (alttan üste doğru) takiben tanımlanan bir iç katman yapısı göstermektedir: (a) direkt olarak karbonat (Elika Formasyonu) tabanını üzerleyen, başlıca kil minerallerinden yapılı yaklaşık olarak 50−80 cm kalınlığındaki alt arjilikli seviye, (b) başlıca hematit, kaolinit, anatas ve diyaspor minerallerinden meydana gelen ve yaklaşık olarak 2−3 m kalınlığındaki bir boksitik kil seviyesi, (c) diyaspor, kaolinit, anatas ve hematit minerallerinden yapılı olan ve 5 m kalınlığındaki kırmızı boksit seviyesi (yüksek tenörlü ana cevher), (d) başlıca kaolinitten yapılı olan 20−50 cm kalınlığındaki üst kaolinit seviyesi ve bu seviye Shemshak formasyonu tarafından üzerlenmektedir. Detaylı petrografik çalışmalar, boksitik protolitin diyajenetik alterasyonunu göstermektedir. Çalışılmış örneklerde gözlenen boksit dokuları mikrogranüler, oolitik, pizolitik, kolloform ve mikroklastiktir. Feldspat tanelerinin yanısıra, kırılmış ve aşınmış kalıntı kuvars taneleri ile ilişkili mikrogranüler ve mikroklastik dokular, hemen hemen komple levhasal diyaspor tarafından yeri alınmıştır. Kırmızı boksitin jeokimyasal analizleri mobil elementlerin (Rb, K, Na, Sr, La, Mg, and Pb) tüketildiğini, daha az mobil elementlerin (Nb, Th, Zr, Mo, Ga, and Cr) ise zenginleştiğine işaret etmektedir. Zıt bir sonuç, boksitik kil için gözlenmektedir. Üst kaolinit seviyesi için kondrite göre normalize edilmiş NTE (Nadir Toprak Elementleri) örgüleri altlayan kırmızı boksitlerinkilere benzerdir, ve alt arjilikli seviye için gözlenen örgüler, üzerleyen arjilikli boksit seviyesindekine benzerdir. Ce, boksitik kilde bir negatif anomali ve kırmızı boksitte bir pozitif anomali gösterir. NTE ve diğer elementler arasında hesaplanmış olan korelasyon katsayıları, NTE-içeren minerallerin Ti ve Nb, kil mineralleri, ve zirkonun oksitleri olduğunu ortaya koymaktadır. Jajarm boksitlerinin var olan diyasporik mineralojik bileşiminin aksine, jeokimyasal ve mineralojik veriler, orijinal jipsitik bir bileşime işaret eder. Sonuç olarak, değişim diyagramları ve NTE örgüleri ile sağlanan kanıt ile gözlenen mineralojik ve dokusal ilişkiler, Jajarm boksiti için hem bazik hem de sedimanter kayaçlardan oluşan karışmış bir kökeni işaret etmektedir. Aslında, boksitleşme bazik köken kayaçlar üzerinde başlamış ve karstik özellikler içerisinde yerleşim ve yeniden işlenmesi süresince devam etmiştir.

Jajarm (KD İran) karst boksit cevher yatağının petrografisi ve jeokimyası: kaynak kaya materyali ve cevher kökeni için göstergeler

The Jajarm bauxite deposit, northeast Iran, is the largest such deposit in Iran. The deposit is sandwiched between the Triassic Elika formation and the Jurassic Shemshak formation, housed within karstic features developed within the former unit. The deposit generally shows an internal layering defined by the following four distinct horizons (from bottom to top): (a) a lower argillaceous horizon, approximately 50–80 cm thick, is mainly composed of clay minerals that directly overlies the carbonate footwall (Elika formation); (b) a bauxitic clay layer approximately 2–3 m thick that consists mainly of hematite, kaolinite, anatase, and diaspore; (c) a red bauxite layer (the main high-grade ore), about 5 m thick and composed of diaspore, kaolinite, anatase, and hematite; and (d) an upper kaolinitic layer that is 20– 50 cm thick, composed mainly of kaolinite, and overlain by the Shemshak formation. Detailed petrographic studies reveal diagenetic alteration of the bauxitic protolith. The main observed bauxite textures are microgranular, oolitic, pisolitic, fluidal-collomorphic, and microclastic. Microgranular and microclastic textures associated with the residual fractured and corroded quartz grains, as well as feldspar grains are almost completely replaced by platy diaspore. Geochemical analyses of the red bauxite reveal enrichment of less mobile elements (Nb, Th, Zr, Mo, Ga, and Cr) and depletion of mobile elements (Rb, K, Na, Sr, La, Mg, and Pb); the opposite result is obtained for the bauxitic clay. Chondrite-normalized REE (Rare Earth Element) patterns for the upper kaolinite layer are similar to those for the underlying red bauxite, and the patterns obtained for the lower argillaceous layer are similar to those for the overlying argillaceous bauxite horizon. Ce shows a positive anomaly in the red bauxite and a negative anomaly in the bauxitic clay. The correlation coefficients calculated between REE and other elements demonstrate that the likely REE-bearing minerals are oxides of Ti and Nb, clay minerals, and zircon. In contrast to the present diasporic mineralogical composition of the Jajarm bauxite, the geochemical and mineralogical data indicate an original gibbsitic composition. Finally, the observed mineralogical and textural evidence, combined with the evidence provided by variation diagrams and REE patterns, indicates a mixed origin for the Jajarm bauxite from both basic igneous and sedimentary rocks. In fact, bauxitization was initiated on basic source rocks and continued during reworking and replacement within the karstic features.

___

  • ANNELLES, R.N., ARTHURTON, R.S., BAZELY, R.A. & DAVIES, R.G. 1975. E3-E4 Quadrangle, 1:100 000 Scale Geological Map and Explanatory Text of Qazvin and Rasht. Geological Survey of Iran, Tehran.
  • AUGUSTITHIS, S.S. 1982. Atlas of the Sphaeroidal Textures and Structures and their Genetic Significance. Theophrastus S.A. Athens.
  • BALASUBRAMANIAM, K.S., SURENDRA, M. & RAVIKUMAR, T.V. 1987. Genesis of certain bauxite profiles from India. Chemical Geology 60, 227–235.
  • BÁRDOSSY, G. 1982. Karst Bauxite. Development in Economic Geology 14, Elsevier, Amsterdam.
  • BÁRDOSSY, G. 1984. European bauxite deposits. In: JACOB, L.JR. (ed), Proceedings of International Bauxite Symposium. Society of Mining Engineers, New York, 411–435.
  • BÁRDOSSY, G. & ALEVA, J.Y.Y. 1990. Lateritic Bauxites. Developments in Economic Geology 27, Elsevier, Amsterdam.
  • BERBERIAN, F. & BERBERIAN, M. 1981. Tectono-plutonic episodes in Iran. In: GUPTA, H.K. & DELANY, F.M. (eds), Zagros, Hindu Kush, Himalaya Geodynamic Evolution. American Geophysical Union Geodynamics Series 3, 5–32.
  • BERBERIAN, M. 1983. Continental Deformation in the Iranian Plateau. Geological Survey of Iran, report 52.
  • BERBERIAN, M. & KING, G.C.P. 1981. Towards a paleogeography and tectonic evolution of Iran. Canadian Journal of Earth Sciences 18, 210–265.
  • BIBER, M.V., DOS SANTOS, A. & STUMM, W. 1994. The coordination chemistry of weathering: IV. inhibition of the dissolution of oxide minerals. Geochimica et Cosmochica Acta 58, 1999–2010.
  • BOYNTON, W.V. 1984. Cosmochemistry of the rare earth elements: meteorite studies. In: HENDERSON, P. (ed), Rare Earth Element Geochemistry. Elsevier, 63–114.
  • BRIMHALL, G.H., LEWIS, C.J., AGUE, J.J., DIETRICH, W.E., HAMPEL, J. & RIX, P. 1988. Metal enrichment in bauxites by deposition of chemically mature aeolian dust. Nature 333, 819–824.
  • BRINDLEY, G.W. 1981. Structures and chemical compositions of clay minerals. In: LONGSTAFFE, F.J. (ed), Clays and the Resource Geologist Calgary. Mineralogical Association of Canada, 1–21.
  • BRONEVOI, V.A., ZHILBERMINC, A.V. & TEENIAKOV, V.A. 1985. Average chemical composition of bauxites and their evolution in time. Geokhimia, Moscow 4, 435–446 [in Russian].
  • BRÖNNIMANN, P., ZANINETTI, L., MOSHTAGHIAN. A. & HUBER, H. 1973. Foraminifera from the Sorkh Shale formation of the Tabas area, East-Central Iran. Rivista Italiana Dipaleontologia e Stratigrafia 79, 1–32.
  • COTTEN, J., LE DEZ, A., BAU, M., CAROFF, M., MAURY, R.C., DULSKI, P., FOURCADE, S., BOHN, M. & BROUSSE, R. 1995. Origin of anomalous rare-earth element and yttrium enrichment in subaerially exposed basalts: evidence from French Polynesia. Chemical Geology 119, 115–138.
  • DEDECKER, D. & STOOPS, G. 1999. A morpho-synthetic system for the higher level description of microfabrics of bauxitic and kaolinitic soils. A first approximation. Catena 35, 317–326.
  • ELIOPOULOS, D.G. & ECONOMOU-ELIOPOULOS, M. 2000. Geochemical and ineralogical characteristics of Fe-Ni- and bauxitic-laterite deposits of Greece. Ore Geology Reviews 16, 41–58.
  • FURIAN, S. 1994. Morphogenèserpédogenèse en milieu tropical humide de la Serra do Mar, Bresil: Contribution de l’altération et de la pédogenèse á une dynamique actuelle de glissement. PhD Thesis, Université de Caen, France [unpublished].
  • GONZÁLEZ-LÓPEZ, J.M., BAULUZ, B., FERNÁNDEZ-NIETO, C. & OLITE A.Y. 2005. Factors controlling the trace-element distribution in fine-grained rocks: the Albian kaolinite-rich deposits of the Oliete Basin (NE Spain). Chemical Geology 214, 1–19.
  • GRUBB, P.L.C. 1963. Critical factors in the genesis, extent and grade of some residual bauxite deposits. Economic Geology 58, 1267– 1277.
  • HASKIN, M.A. & HASKIN, L.A. 1966. Rare earths in European shales: a redetermination. Science 154, 507–509.
  • HOOPER, R.J., BARON, I., HATCHER JR., R.D. & AGAH, S. 1994. The development of the southern Tethyan margin in Iran after the break up of Gondwana: implications of the Zagros hydrocarbon province. Geosciences 4, 72–85.
  • IIJIMA, A. & MATSUMOTO, R. 1982. Berthierine and chamosite in coal measures of Japan. Clays and Clay Minerals 30, 264–274.
  • KLEIN, C. & HURLBUT, C.S.Jr. 1999. Manual of Mineralogy. Revised 21th Edition. John Wiley and Sons. INC, 315–320.
  • LYEW-AYEE, P.A. 1986. A case for the volcanic origin of Jamaican bauxites. Journal of the Geological Society of Jamaica, 9–39.
  • MACLEAN, W.H., BONAVIA, F.F. & SANNA. G. 1997. Argillite debris converted to bauxite during karst weathering: evidence from immobile element geochemistry at the Olmedo deposit, Sardinia. Mineralium Deposita 32, 607–616.
  • MACLEAN, W.H. 1990. Mass change calculations in altered rock series. Mineralium Deposita 25, 44–49.
  • MAKSIMOVIĆ, Z. & PANTÓ, G. 1991. Contribution to the geochemistry of the rare earth elements in the karst-bauxite deposits of Yugoslavia and Greece. Geoderma 51, 93–109.
  • MARCOUX, J. 1993. Late Permian to Triassic Tethyan paleoenvironments. Conference on Carboniferous to Jurassic of PANGEA, Abstract with Program, 15–17.
  • MARIANO, A.N. 1989. Economic geology of rare earth minerals. In: LIPIN, B.R. &MCKAY, G.A. (eds), Geochemistry and Mineralogy of Rare Earth Elements. Mineralogical Society of America, Reviews in Mineralogy 21, 309–336.
  • MORDBERG, L.E. 1993. Patterns of distribution and behaviour of trace elements in bauxites. Chemical Geology 107, 241–244.
  • MORDBERG, L.E. 1999. Geochemical evolution of a Devonian diaspore-crandallite–svanbergite-bearing weathering profile in the Middle Timan, Russia. Journal of Geochemical Exploration 66, 353–361.
  • MUTAKYAHWA, M.K.D., IKINGURA, J.R. & MRUMA, A.H. 2003. Geology and geochemistry of bauxite deposits in Lushoto District, Usambara Mountains, Tanzania. Journal of African Earth Sciences 36, 357–369.
  • NABAVI, M. H. 1987. Geological Map of Semnan Sheet, 1:100,00 Scale. Geological Survey of Iran, Tehran.
  • NABAVI, M. H. & SEYED-EMAMI, K. 1977. Sinemudan ammonites from the Shemshak formation of North Iran (Semnan area, Alborz). Neues Jahrbuch fur Geologie und Palaontologie- Abhandlungen 153, 70–85.
  • NAHON, D.B. 1991. Introduction to the Petrology of Soils and Chemical Weathering. Wiley, New York.
  • NIKITINA, A.P. 1986. Types of residual bauxites of the KMA area, conditions of their formation and preservation. Kora Vyvetrivania (Weathering Crust), Moscow 19, 106–116 [in Russian].
  • ÖZTÜRK, H., HEIN, J.R., HANILCI, N. 2002. Genesis of the Doğankuzu and Mortaş bauxite deposits, Taurides, Turkey: separation of Al, Fe, and Mn and implications for passive margin metallogeny. Economic Geology 97, 1063–1077.
  • PRICE, G.D., VALDES, P.J. & SELLWOOD, B.W. 1997. Prediction of modern bauxite occurrence: implications for climate reconstruction. Palaeogeography, Palaeoclimatology, Palaeoecology 131, 1–13.
  • PUCHELT, H. & EMMERMANN, R. 1976. Bearing of rare earth patterns of appetites from igneous and metamorphic rocks. Earth and Planetary Science Letters 31, 279–286.
  • PYE, K. 1988. Bauxites gathering dust. Nature 333, 800–801.
  • SCHROLL, E. & SAUER, D. 1968. Beitrag zur Geochemie von Titan, Chrom, Nickel, Cobalt, Vanadium und Molibdän in bauxitischen Gesteinen und das Problem der stofflichen Herkunft des Aluminiums. Travaux de l’ICSOBA, Zagreb 5, 83–96.
  • SEYED-EMAMI, K., FÜRSICH, F.T., WILMSEN, M., SCHAIRER, G. & MAJIDIFARD, M.R. 2005. Toarcian and Aalenian (Jurassic) ammonites from the Shemshak formation of the Jajarm area (eastern Alborz, Iran). Palaontologische Zeitschrift 79, 349– 369.
  • SHAFFER, J.W. 1975. Bauxite raw materials. In: Industrial Minerals and Rocks (Non-metallic other than Fuels). American Institute of Mining and Metallurgical, and Petroleum Engineering, 442–459.
  • STAMPFLI, G., ZANINETTI, L., BRÖNIMANN, P., JENNY-DESHUSSES, C. & STAMPFLI-VUILLE, B. 1976. Trias de I'Elburz oriental, Iran. Stratigraphie, sédimentologie, micropaléontologie. Rivista Italiana di Paleontologia e Stratigrafia 82, 467–500.
  • STÖCKLIN, J., EFTEKHAR-NEZHAD, J. & HUSHMAND-ZADEH, A. 1965. Geology of the Shotori Range (Tabas area, East lran). Geological Survey of Iran, Tehran, report 3.
  • TAYLOR, S.R. & MCLENNAN, S.M. 1981. The composition and evolution of the continental crust: rare earth element evidence from sedimentary rocks. Philosophical Transactions of the Royal Society of London Series A 301, 381–399.
  • VALETON, I., BIERMANN, M., RECHE, R., ROSENBERG, F. 1987. Genesis of nickel laterites and bauxites in Greece during the Jurassic and Cretaceous, and their relation to ultrabasic parent rocks. Ore Geology Reviews 2, 359–404.
  • VELDE, B. 1992. Introduction to Clay Minerals: Chemistry, Origins, Uses and Environmental Significance. Chapman & Hall, London.
  • VOLLMER, T. 1987. Zur Geologie des nördlichen Zentral-Elburz zwischen Chalus- und Haraz-Tal, Iran. Mitteilungen des Geologisch- Paläontologischen Instituts der Universitat of Hamburg 63, 1–125.
  • YARIV, S. & CROSS, H. 1979. Geochemistry of Colloid Systems. Springer Verlag, Berlin.