Stable Isotope Composition of Hydrothermally Altered Rocks and Hydrothermal Minerals at the Los Azufres Geothermal Field, Mexico

The Los Azufres geothermal field is the second most important geothermal field for electricity production in Mexico, with a total installed capacity of 188 MW. Hydrothermal alteration studies have been an important tool for geothermal exploration and development of the field, but little attention has been given to the geochemical and isotopic characterization of hydrothermal minerals. d18O, d2H, and d13C systematics at Los Azufres geothermal field were investigated using whole rock samples, as well as hydrothermal minerals separates, obtained from different depths in the wells Az-26 and Az-52. Most d18O values reproduce well the present in-situ field temperatures and isotopic composition of geothermal fluids or local meteoric water. Temperature seems to be the most important factor controlling the oxygen isotope composition of reservoir rocks. A vertical correlation with decreasing d18O values and increasing temperature is given for both well profiles. Most analyzed calcites have isotope ratios close to or in isotopic equilibrium with present geothermal or meteoric water at in-situ temperatures. A good correlation between lower calcite d18O values and high W/R ratios indicate that oxygen isotopic composition of calcite might constitute a tool for identifying areas of high permeability in the geothermal system of Los Azufres. In contrast, the disequilibrium for some quartz samples suggests the presence of reservoir fluids significantly enriched in 18O (d18O values about 8%o higher than those of present geothermal fluids) at the time of quartz deposition.

Stable Isotope Composition of Hydrothermally Altered Rocks and Hydrothermal Minerals at the Los Azufres Geothermal Field, Mexico

The Los Azufres geothermal field is the second most important geothermal field for electricity production in Mexico, with a total installed capacity of 188 MW. Hydrothermal alteration studies have been an important tool for geothermal exploration and development of the field, but little attention has been given to the geochemical and isotopic characterization of hydrothermal minerals. d18O, d2H, and d13C systematics at Los Azufres geothermal field were investigated using whole rock samples, as well as hydrothermal minerals separates, obtained from different depths in the wells Az-26 and Az-52. Most d18O values reproduce well the present in-situ field temperatures and isotopic composition of geothermal fluids or local meteoric water. Temperature seems to be the most important factor controlling the oxygen isotope composition of reservoir rocks. A vertical correlation with decreasing d18O values and increasing temperature is given for both well profiles. Most analyzed calcites have isotope ratios close to or in isotopic equilibrium with present geothermal or meteoric water at in-situ temperatures. A good correlation between lower calcite d18O values and high W/R ratios indicate that oxygen isotopic composition of calcite might constitute a tool for identifying areas of high permeability in the geothermal system of Los Azufres. In contrast, the disequilibrium for some quartz samples suggests the presence of reservoir fluids significantly enriched in 18O (d18O values about 8%o higher than those of present geothermal fluids) at the time of quartz deposition.

___

  • Aguilar y Vargas, V.H. & Verma, S.P. 1987. Composición química (elementos mayores) de los magmas en el Cinturón Volcánico Mexicano. Geofísica International 26, 195–272.
  • Alt, J.C. & Bach, W. 2006. Oxygen isotope composition of a section of lower oceanic crust, ODP Hole 735B. Geochemistry, Geophysics, Geosystems 7, doi:10.1029/2006GC001385.
  • Arnórsson, S., Gunnlaugsson, E. & Svavarsson, H. 1983. Th e chemistry of geothermal waters in Iceland II. Mineral equilibria and independent variables controlling water compositions. Geochimica et Cosmochimica Acta 47, 547–566.
  • Birkle, P. 1998. Origin and Environmental Impact of Geothermal Waters in Los Azufres, Mexico. PhD Th esis, Wissenschaft liche Mitteilungen, Institut für Geologie, Technische Universität Bergakademie Freiberg, Germany [in German].
  • Birkle, P., Merkel, B., Portugal, E. & Torres-Alvarado, I.S. 2001. Th e origin of reservoir fl uids in the geothermal fi eld of Los Azufres, Mexico – isotopical and hydrological indications. Applied Geochemistry 16, 1595–1610.
  • Bottinga, Y. 1969. Calculated fractionation factors between carbon and hydrogen isotope exchange in the system calcite- carbon dioxide-graphite-methane-hydrogen-water vapour. Geochimica et Cosmochimica Acta 33, 49–64.
  • Browne, P.R.L. 1998. Hydrothermal alteration in New Zealand geothermal systems. In: Arehart, G.B. & Hulston, J.R. (eds), Water-rock Interaction. Balkema, Amsterdam, 11–17.
  • Campos-Enriquez, J.O. & Garduño-Monroy, V.H. 1995. Los Azufres silicic center (Mexico): inference of caldera structural elements from gravity, aeromagnetic, and geoelectric data. Journal of Volcanology and Geothermal Research 67, 123–152.
  • Cathelineau, M. & Izquierdo, G. 1988. Temperature-composition relationships of authigenic micaceous minerals in the Los Azufres geothermal system. Contributions to Mineralogy and Petrology 100, 418–428.
  • Cathelineau, M., Izquierdo, G., Vázquez, G.R. & Guevara, M. 1991. Deep geothermal wells in the Los Azufres (Mexico) caldera: volcanic basement stratigraphy based on major- element analysis. Journal of Volcanology and Geothermal Research 47, 149–159.
  • Cathelineau, M., Oliver, R., Garfias, A. & Nieva, D. 1985. Mineralogy and distribution of hydrothermal mineral zones in the Los Azufres (Mexico) geothermal fi eld. Geothermics 14, 49–57.
  • Clayton, R.N. & Mayeda, T. 1963. Th e use of bromine pentafl uoride in the extraction of oxygen from oxides and silicates for isotopic analysis. Geochimica et Cosmochimica Acta 27, 43–52.
  • Clayton, R.N. & Steiner, A. 1975. Oxygen isotopes studies of the geothermal system at Wairakei, New Zealand. Geochimica et Cosmochimica Acta 39, 1179–1186.
  • Clayton, R.N., Muffler, L.P.J. & White, D.E. 1968. Oxygen isotope study of calcite and silicates of the River Rancho No. 1 well, Salton Sea geothermal fi eld, California. American Journal of Science 266, 968–979.
  • Clayton, R.N., O’Neil, J.R. & Mayeda, T.K. 1972. Oxygen isotope exchange between quartz and water. Journal of Geophysical Research 77, 3057–3067.
  • Dobson, P.F. & Mahood, G.A. 1985. Volcanic stratigraphy of the Los Azufres Geothermal Area, Mexico. Journal of Volcanology and Geothermal Research 25, 273–287.
  • Garduño Monroy, V.H. 1988. La caldera de Los Azufres y su relación con el sistema regional E–W. Geotermia, Revista Mexicana de Geoenergía 4, 49–61.
  • Gerardo-Abaya, J., D’Amore, F. & Arnórsson, S. 2000. Isotopes for geothermal investigations. In: Arnórsson, S. (ed), Isotopic and Chemical Techniques in Geothermal Exploration, Development, and Use: Sampling Methods, Data Handling, Interpretation. Vienna, International Atomic Energy Agency, 49–65.
  • Giggenbach, W. 1981. Geothermal mineral equilibria. Geochemica et Cosmochimica Acta 45, 393–410.
  • Giggenbach, W. 1988. Geothermal solute equilibria. Derivation of Na-K-Mg-Ca geoindicators. Geochemica et Cosmochimica Acta 52, 2749–2765.
  • Giggenbach, W. & Quijano, L. 1981. Estudio isotópico de las aguas del campo geotérmico de Los Azufres, Michoacán. Unpublished internal report, Comisión Federal de Electricidad, Mexico.
  • González Partida, E. & Barragán, R.M. 1989. Estudio detallado de las inclusiones fl uidas en el sistema hidrothermal activo del campo geotérmico de Los Azufres, Mich. Geotermia, Revista Mexicana de Geoenergía 5, 126–152.
  • González Partida, E. & Nieva Gómez, D. 1989. Caracterización mineralógica en 10 pozos del campo geotérmico de Los Azufres, Mich. I: Minerales opacos. Geotermia, Revista Mexicana de Geoenergía 5, 347–373.
  • Gutiérrez-Negrín, L.C.A., Maya-González, R. & Quijano- León, J.L. 2010. Current Status of Geothermics in Mexico. Proceedings of the World Geothermal Congress. International Geothermal Association, Bali, Indonesia.
  • Hoefs, J. 1980. Stable Isotope Geochemistry. 3rd Edition, Springer, Berlin.
  • Huitrón Esquivel, R., González, M.A. & Abad Rodríguez, A. 1987. Informe del pozo Az-52 del campo geotérmico de Los Azufres, Michoacán. Unpublished internal report, Comisión Federal de Electricidad, Mexico.
  • Le Bas, M.J., Le Maitre, R.W., Streckeisen, A. & Zanettin, B. 1986. A chemical classifi cation of volcanic rocks based on the total alkali-silica diagram. Journal of Petrology 27, 745–750.
  • Marumo, K., Nagasawa, K. & Kuroda, Y. 1980. Mineralogy and hydrogen isotope geochemistry of clay minerals in the Ohnuma Geothermal Area, Northeastern of Japan. Earth and Planetary Science Letters 47, 255–262.
  • Matthews, A., Goldsmith, J.R. & Clayton, R.N. 1983. Oxygen isotope fractionations involving pyroxenes: the calibration of mineral pairs thermometers. Geochemica et Cosmochimica Acta 47, 631–644.
  • McCrea, J.M. 1950. On the isotopic chemistry of carbonates and a paleotemperature scale. Journal of Chemical Physics 18, 849– 857.
  • Nicholson, K. 1993. Geothermal Fluids. Chemistry and Exploration Techniques. Berlin, Springer-Verlag.
  • Nieva, D., Barragán, R.M., Cathelineau, M., González, E., Izquierdo, G., Oliver, R., Portugal, E., Santoyo, E. & Verma, M. 1987. Estudio de la estructura hidrológica y de la distribución de parámetros físico-químicos en el yacimiento de Los Azufres, Mich., fase II. Unpublished internal report, Instituto de Investigaciones Eléctricas, Mexico.
  • O’Neil, J.R. & Taylor, H.P., Jr. 1967. Th e oxygen isotope and cation exchange chemistry of feldespars. American Mineralogists 52, 1414–1437.
  • O’Neil, J.R., Clayton, R.N. & Mayeda, T.K. 1969. Oxygen isotope fractionation in divalent metal carbonates. Journal of Chemical Physics 51, 5547–5558.
  • Pradal, E. & Robin, C. 1994. Long-lived magmatic phases at Los Azufres volcanic center, Mexico. Journal of Volcanology and Geothermal Research 63, 201–215.
  • Ramírez Domínguez, E., Verma, M.P. & Nieva, D. 1988. Ebullición y mezcla en procesos de formación de fuentes termales en Los Azufres, Mich. Geotermia, Revista Mexicana de Geoenergía 4, 59–77.
  • Razo-Montiel, A., Huitrón Ezquivel, R. & Moore, J. N. 1989. Geología del campo geotérmico de Los Azufres, Michoacan. In: Molinar, R. & Kruger, P. (eds), Preliminary Proceedings of the Final Symposium on the Agreement Between U.S. Department of Energy and the Comisión Federal de Electricidad de México in the Field of Geothermal Energy. San Diego, CA, DOECFE, 7–15.
  • Robles Camacho, J., Izquierdo Montalvo, G. & Oliver Hernández, R. 1987. Alteración hidrotermal en el Módulo Marítaro, Los Azufres, Michoacán. Geotermia, Revista Mexicana de Geoenergía 3, 131–143.
  • Rodríguez Salazar, A. & Garfias, A. 1981. Resumen geológico del pozo Az-26 del campo geotérmico de Los Azufres, Michoacán. Unpublished internal report, Comisión Federal de Electricidad, Mexico.
  • Santoyo, E., Verma, S. P., Nieva, D. & Portugal, E. 1991. Variability in the gas phase composition of fl uids discharged from Los Azufres geothermal fi eld, Mexico. Journal of Volcanology and Geothermal Research 47, 161–181.
  • Sturchio, N.C., Keith, T.E.C. & Muehlenbachs, K. 1990. Oxygen and carbon isotope ratios of hydrothermal minerals from Yellowstone drill cores. Journal of Volcanology and Geothermal Research 40, 23–37.
  • Tabaco Chimal, F. 1990. Estudio isotópico del Carbono-13 en fl uidos hidrotermales del campo geotérmico de Los Azufres, Michoacán. Bachelor’s Th esis, Universidad Autónoma de Tlaxcala, Mexico.
  • Taylor, H.P., Jr. 1979. Oxygen and hydrogen isotope relationships in hydrothermal mineral deposits. In: Barnes, H.L. (ed), Geochemistry of Hydrothermal Ore Deposits. John Wiley.
  • Taylor, B. 1986. Magmatic volatiles: isotopic variation of C, H, O and S. In: Valley, W.J., Taylor, P.H. & O´Neil, R.J. (eds), Stable Isotopes in High Temperature Geological Processes. Reviews in Mineralogy, Volume 16.
  • Torres-Alvarado, I.S. 2002. Chemical equilibrium in hydrothermal systems: the case of Los Azufres geothermal fi eld, Mexico. International Geology Review 44, 639–652.
  • Torres-Alvarado, I.S. & Satir, M. 1998. Geochemistry of hydrothermally altered rocks from Los Azufres geothermal fi eld, Mexico. Geofísica Internacional 37, 201–213.
  • Venneman, T.W. & O’Neil, J.R. 1993. A simple and inexpensive method of hydrogen isotope and water analyses of minerals and rocks based on zinc reagent. Chemical Geology 103, 227– 334.
  • Verma, S.P., Torres-Alvarado, I.S. & Sotelo-Rodríguez, Z.T. 2002. SINCLAS, standard igneous norm and volcanic rock classifi cation system. Computer & Geosciences 28, 711–715.
  • Verma, S.P., Torres-Alvarado, I.S., Satir & Dobson, P.F. 2005. Hydrothermal alteration eff ects in geochemistry and Sr, Nd, Pb, and O isotopes of magmas from the Los Azufres geothermal fi eld (Mexico): A statistical approach. Geochemical Journal 39, 141–163.
  • Williams, A.E. & Elders, W.A. 1984. Stable isotope systematics of oxygen and carbon in rocks and minerals from the Cerro Prieto Geothermal Anomaly, Baja California, Mexico. Geothermics 13, 49–63.
Turkish Journal of Earth Sciences-Cover
  • ISSN: 1300-0985
  • Yayın Aralığı: Yılda 6 Sayı
  • Yayıncı: TÜBİTAK
Sayıdaki Diğer Makaleler

Chromite-hosted Silicate Melt Inclusions from Basalts in the Stravaj Complex, Southern Mirdita Ophiolite Belt (Albania)

IZABELLA HAVANCSAK, FRIEDRICH KOLLER, JANOS KODOLANYI

Aspects of Final Disposal of Radioactive Waste in Germany

GUIDO BRACKE

Geochemical and isotopic constraints on petrogenesis of the Beypazarı granitoid, NW Ankara, western central Anatolia, Turkey

Yeşim ÖZTÜRK YÜCEL, Cahit HELVACI, Muharrem SATIR

Juvenil Neoproterozoyik Granitoyidlerindeki Arkeyan Zirkon U-Pb Yaş Çelişkisi, Orta Kuzey Sudan, Saharan Metakratonu

SHANG COSMAS KONGNYUY, MORTEANI GIULIO & MUHARREM SATIR

Stable Isotope Composition of Hydrothermally Altered Rocks and Hydrothermal Minerals at the Los Azufres Geothermal Field, Mexico

IGNACIO S. TORRES-ALVARADO, MUHARREM SATIR

Beypazarı Granitoyidinin (KB Ankara, Batı-Orta Anadolu, Türkiye) Petrojenezi Üzerine Jeokimyasal ve İzotopik Sınırlamalar

YEŞİM YÜCEL ÖZTÜRK, CAHİT HELVACI & MUHARREM SATIR

Archaean zircon U-Pb age paradox in juvenile neoproterozoic granitoids, Central North Sudan, Saharan Metacraton

Giulio MORTEANI, Cosmas Kongnyuy SHANG, Muharrem SATIR

The Kemer Metamorphic Complex (NW Turkey): A Subducted Continental Margin of the Sakarya Zone

MESUT AYGÜL, GÜLTEKİN TOPUZ, ARAL I. OKAY, MUHARREM SATIR, HANS-PETER MEYER

Dating Subduction Events in East Anatolia, Turkey

ROLAND OBERHANSLI, ROMAIN BOUSQUET, OSMAN CANDAN & ARAL I. OKAY

Al-in-Hornblende Thermobarometry and Sr-Nd-O-Pb Isotopic Compositions of the Early Miocene Alaçam Granite in NW Anatolia (Turkey)

ALTUĞ HASÖZBEK, BURHAN ERDOĞAN, MUHARREM SATIR, WOLFGANG SIEBEL