Beypazarı Granitoyidinin (KB Ankara, Batı-Orta Anadolu, Türkiye) Petrojenezi Üzerine Jeokimyasal ve İzotopik Sınırlamalar

Ankara (Türkiye) batısında yer alan Geç Kretase yaşlı Beypazarı granitoyidi, petrografi ve jeokimyasal bileşimine dayanarak, granodiyorit ve diyorit olmak üzere iki farklı birime ayrılmıştır. Granitoyid subalkalin özellikte ve yüksek-K’lu seriye aittir. Granitoyidin bileşimi granitten diyorite değişim sunmaktadır. Bu kayaçlar göreceli olarak düşük 87Sr/86Sr (0.7053–0.7070) oranına sahiptir. Mineralojik ve dokusal veriler, ve ana ve iz element jeokimyası ile birlikte, tüm bu karakteristik özellikler, Beypazarı granitoyidiinin üst kabuk etkileşimi ile kirlenmiş manto ve kabuk bileşenlerine sahip, hibrid bir kaynaktan, magmatik bir yay ortam içinde oluştuğuna işaret etmektedir. Bu kayaçlar –5.5’den –2.0’a değişen aralıkta εNd(75Ma) değerlerine sahiptir. Bu karakteristikler aynı zamanda, kabuk bileşeninin Beypazarı granitoyidinin petrojenezinde önemli bir rol oynadığına işaret etmektedir. Beypazarı (Ankara) yakınında yüzlek veren, orta derecede evrim geçirmiş granitoyid stoğunun, toplam kayaç, kuvars ve silikat minerallerinin oksijen ve hidrojen izotop jeokimyası çalışılmıştır. Beypazarı granitoyidinin δ18O değerleri normal I-tipi granitler için tanımlanan değerlerden daha yüksektir. Bu durum, Beypazarı granitoyidinin önemli bir kabuk bileşenine sahip olduğuna işaret eden arazi gözlemleri, petrografik ve tüm-kayaç jeokimyasal veriler ile uyum içindedir. Bununla birlikte, mineraller arasındaki δ18O ilişkileri yarı-katı koşullarda herhangi bir hidrotermal proses girişine işaret etmemektedir. Beypazarı granitoyid örneklerine ait oksijen izotop sistematikleri, düşük-δ18O akışkanlarının (meteorik su) belirgin bir girişi olmaksızın, yüksek δ18O değerlerine sahip akışkanların (magmatik su) aktivitesini sonuçlamaktadır. Analizi yapılan dört kuvars-feldispat çift i 0.5–2.0 arasında Δqtz-feld değerlerine sahiptir, bu da kapalı sistem koşulları altında denge kavramı ile uyumludur. Sonuçta, granitoyidlerin hidrotermal akışkanlarla yaygın etkileşimini gösteren herhangi bir duraylı izotop verisi bulunmamaktadır ve bu sonuç bölgede büyük ölçekli baz metal mineralizasyonunun olmaması ile uyumludur.   

Geochemical and Isotopic Constraints on Petrogenesis of the Beypazarı Granitoid, NW Ankara, Western Central Anatolia, Turkey

The Upper Cretaceous Beypazarı granitoid of the western Ankara, Turkey, is composed of two different units, on the basis of petrography and geochemical composition; these are granodiorite and diorite. The granitoid is subalkaline, belonging to the high-K calc-alkaline I-type granite series, which have relatively low initial 87Sr/86Sr ratios (0.7053-0.7070). All these characteristics, combined with major, trace element geochemical data as well as mineralogical and textural evidence, reveal that the Beypazarı granitoid formed in a volcanic arc setting and was derived from a subduction-modified and metasomatized mantle-sourced magma, with its crustal and mantle components contaminated by interaction with the upper crust. The rocks have eNd(75Ma) values ranging from -5.5 to -2.0. These characteristics also indicate that a crustal component played a very important role in their petrogenesis. The moderately evolved granitoid stock cropping out near Beypazarı, Ankara, was studied using the oxygen and hydrogen isotope geochemistry of whole rock, quartz and silicate minerals. d18O values of the Beypazarı granitoid are consistently higher than those of normal I-type granites. This is consistent with field observations, petrographic and whole-rock geochemical data, which indicate that the Beypazarı granitoid has significant crustal components. However, the d18O relationships among minerals indicate a very minor influence of hydrothermal processes in sub-solidus conditions. The oxygen isotope systematics of the Beypazarı granitoid samples results from the activity of high-d18O fluids (magmatic water), with no major involvement of low-d18O fluids (meteoric water) evident. The analysed four quartz-feldspar pairs have values of Dqtz-fsp between 0.5-2.0, which are consistent with equilibrium under close-system conditions. No stable isotope evidence was found to suggest that extensive interaction of granitoids with hydrothermal fluids occurred and this is consistent with the lack of large-scale base-metal mineralization.

___

  • Bacon, C.R. & Druıtt, T.H. 1988. Compositional evolution of the zoned calc-alkaline magma chamber of mount Mazama, crater Lake, Oregon. Contribution to Mineralogy and Petrology 98, 224–256.
  • Bİllur, B. 2004. Geology and Petrology of the Beypazarı Granitoids: Yassıkaya Sector. Master Th esis, the Graduate School of Natural and Applied Sciences of Middle East Technical University [unpublished].
  • Blevın, P.L. 2004. Metallogeny of granitic rocks. Th e Ishihara Symposium: Granites and Associated Metallogenesis, Geoscience Australia, 1–4.
  • Bottınga, Y. & Javoy, M. 1975. Oxygen isotope partitioning among the minerals in igneous and metamorphic rocks. Reviews of Geophysics and Space Physics 13, 401–418.
  • Boztuğ, D. & Arehart, G.B. 2007. Oxygen and sulfur isotope geochemistry revealing a significant crustal signature in the genesis of the post-collisional granitoids in central Anatolia, Turkey. Journal of Asian Earth Sciences 30, 403–416.
  • Boztuğ, D., Arehart, G.B., Platevoet, B., Harlavan, Y. & Bonın, B. 2007. High-K, calc-alkaline I-type granitoids from the composite Yozgat batholith generated in a post-collisional setting following continent-oceanic island arc collision in central Anatolia, Turkey. Mineralogy and Petrology 91, 191– 223.
  • Brown, C.G., Thorpe, R.S. & Webb, P.C. 1984. Th e geochemical characteristics of granitoids in contrasting arcs and comments on magma sources. Journal of the Geological Society, London 141, 411–426.
  • Bullen, T.D. & Clynne, M.A. 1990. Trace element and isotopic constraints on magmatic evolution at Lassen volcanic center. Journal of Geophysic Research 95, 19671–19691.
  • Chappell, B.W. & Whıte, A.J.R. 1992. I- and S-type granites in the Lachlan Fold Belt. Transactions of the Royal Society of Edinburgh, Earth Sciences 83, 1–26.
  • Chıba, H., Chacko, T., Clayton, R.N. & Goldsmıth, J.R. 1989. Oxygen isotope fractionations involving diopside, forsterite, magnetite and calcite: application to geothermometry. Geochimica et Cosmochimica Acta 53, 2985–2995.
  • Clayton, R.N. & Mayeda, T.K. 1963. Th e use of bromine pentafl uoride in the extraction of oxygen from oxides and silicates for isotope analysis. Geochimica Cosmochimica Acta 27, 43–52.
  • Cox, K.G., Bell, J.D. & Pankhurst, R.J. 1979. Th e Interpretation of Igneous Rocks. George Allen & Unwin, London.
  • Craıg, H. 1961. Standards for reporting concentrations of deuterium and oxygen 18 in natural waters. Science 133, 1833–1834.
  • Crıss, R.E., Fleck, R.J. & Taylor, H.P. 1991. Tertiary meteoric hydrothermal systems and their relation to ore deposition, northwestern United States and southern British Columbia. Journal of Geophysical Research 96, 13335–13356.
  • Çoğulu, E. 1967. Etude petrographique de la region de Mihalıçcık (Turquie). Doctoral Th esis, Zürich, Imprimerie Leemann S.A. B.S.M.P., 47, 683–803.
  • Dİker, S., Çelİk, M. & Kadıoğlu, Y.K. 2006. Finger prints of the formation of geothermal springs on the granitoids: Beypazarı- Ankara, Turkey. Environmental Geology 51, 365–375.
  • Floyd, P.A. & Wınchester, J.A. 1975. Magma type and tectonic setting discrimination using immobile elements. Earth and Planetary Science Letters 27, 211–218.
  • France-Lonard, C., Sheppard, S.M.F. & Le Fort, P. 1988. Hydrogen and oxygen isotope variations in the High Himalaya peraluminous Manaslu leucogranite: evidence for heterogeneous sedimentary source. Geochimica et Cosmochimica Acta 52, 513–526.
  • Förster, H.J., Tıschendorf, G. & Trumbull, R.B. 1997. An evolution of the Rb vs (Y+Nb) discrimination diagram to infer tectonic setting of silicic igneous rocks. Lithos 40, 261–293.
  • Gılettı, B.J. 1986. Diff usion eff ects on oxygen isotope temperatures of slowly cooled igneous and metamorphic rocks. Earth and Planetary Science Letters 77, 218–228.
  • Göncüoğlu, M.C. 1997. Distribution of lower Paleozoic units in the Alpine terranes of Turkey: paleogeographic constraints. In: Göncüoğlu, M.C. & Derman, A.S. (eds), Lower Paleozoic Evolution in Northwest Gondwana. Turkish Association of Petroleum Geologists, Special Publications 3, 13–24.
  • Göncüoğlu, M.C., Turhan, N., Şentürk, K., Özcan, A., Uysal, Ş. & Yalınız, M.K. 2000. A geotraverse across Northwestern Turkey: tectonic units of the Central Sakarya region and their tectonic evolution. In: Bozkurt, E., Winchester, J.A. & Piper, J.D.A. (eds), Tectonics and Magmatism in Turkey and the Surrounding Area. Geological Society, London, Special Publications 173, 139–161.
  • Graham, C.M., Harmon, R.S. & Sheppard, S.M.F. 1984. Experimental hydrogen isotope studies: hydrogen isotope exchange between amphibole and water. American Mineralogist 69, 128–138.
  • Gregory, R.T. & Crıss, R.E. 1986. Isotope exchange in open and closed systems. In: Valley, J.W., Taylor, H.P., Jr. & O’Neıl, J.R. (eds), Stable Isotopes in High Temperature Geological Processes. Mineralogical Society of America. Review in Mineralogy 16, 91–127.
  • Gregory, R.T., Crıss, R.E. & Taylor, H.P. 1989. Oxygen isotope exchange kinetics of mineral pairs in closed and open systems: applications to problems of hydrothermal alteration of igneous rocks and Precambrian iron formations. Chemical Geology 75, 1–42.
  • Grove, T.L. & Donnelly-Nolan, J.M. 1986. Th e evolution of young silicic lavas at Medicine Lake Volcano, California: implications for the origin of compositional gaps in calc-alkaline series lavas. Contributions to Mineralogy and Petrology 92, 281–302.
  • Guffantı, M., Clynne, M.A. & Muffler, L.J.P. 1996. Th ermal and mass implications of magmatic evolution in the Lassen volcanic region, California, and constraints on basalt infl ux to the lower crust. Journal of Geophysical Research 101, 3001–3013.
  • Harmon, R.S. 1984. Stable isotope geochemistry of Caledonian granitoids from the British Isles and east Greenland. Physics of the Earth and Planetary Interiors 35, 105–120.
  • Harrıs, N.B.W., Pearce, J.A. & Tındle, A.G. 1986. Geochemical characteristics of collision-zone magmatism. In: Coward, M.P. & Rıes, A.C. (ed), Collision Tectonics. Geological Society, London, Special Publications 19, 67-81.
  • Harrıs, C., Faure, K., Dıamond, R.E. & Scheepers, R. 1997. Oxygen and hydrogen isotope geochemistry of S- and I-type granitoids: the Cape granite suite, south Africa. Chemical Geology 143, 95–114.
  • Hegner, E., Roddıck, J.C., Fortıer, S.M. & Hulbert, L. 1995. Nd, Sr, Pb, Ar and O isotopic systematics of Sturgeon lake kimberlite, Saskatchewan, Canada: constraints on emplacement age, alteration, and source composition. Contributions to Mineralogy and Petrology 120, 212–222.
  • Helvacı, C. & Bozkurt, S. 1994. Beypazarı (Ankara) granitoidinin jeolojisi, mineralojisi ve petrojenezi [Geology, mineralogy and petrogenesis of Beypazarı (Ankara) granitoid]. Türkiye Jeoloji Bülteni 37, 31–42 [in Turkish with English abstract].
  • Helvacı, C. & İncİ, U. 1989. Beypazarı Trona Yatağının Jeolojisi, Mineralojisi, Jeokimyası ve Yörenin Trona Potansiyeli [Geology, Mineralogy, Geochemistry of Beypazarı Trona Deposit and Trona Potential of the Area]. TÜBİTAK TBAG-685, Dokuz Eylül Üniversitesi [in Turkish, unpublished].
  • Hoskın, P.W.O., Kınny, P.D., Wyborn, D. & Chappell, B.W. 2000. Identifying accessory mineral saturation during diff erentiation in granitoid magmas: an integrated approach. Journal of Petrology 41, 1365–1395.
  • Ishıhara, S. & Matsuhısa, Y. 2002. Oxygen isotopic constraints on the genesis of the Cretaceous–Paleogene granitoids in the Inner Zone of Southwest Japan. Bulletin of the Geological Survey of Japan 53, 421–438.
  • Irvıne, I.C. & Baragar, W.R.A. 1971. A guide to chemical classification of the common volcanic rocks. Canadian Journal of Earth Sciences 8, 523–548.
  • İlbeylİ, N., Pearce, J.A., Meıghan, I.G. & Fallıck, A.E. 2009. Contemporaneous late Cretaceous calc-alkaline and alkaline magmatism in central Anatolia, Turkey: oxygen isotope constraints on petrogenesis. Turkish Journal of Earth Sciences 18, 529–547.
  • Jenkın, G.R.T., Fallıck, A.E., Farrow, C.M. & Bowes, G.M. 1991. COOL: A FORTRAN 77 computer program for modelling stable isotopes in cooling closed systems. Computer Geosciences 17, 391–412.
  • Kadıoğlu, Y.K. & Zoroğlu, O. 2008. Nature of Beypazarı granitoid: geology and geochemistry, northwest Anatolia, Turkey. IOP Conference Series. Earth and Environmental Science 2, 012014.
  • Kendall, C., Sklash, M.G. & Bullen, T.D. 1995. ‘Isotope tracers of water and solute sources in catchments’. In: Solute Modelling in Catchment Systems. J. Wiley & Sons, New York, 261–303.
  • Koçyİğİt, A. 1987. Tectono-stratigraphy of the Hasanoğlan (Ankara) region: evolution of the Karakaya Orogen. Yerbilimleri 14, 269– 293.
  • Koçyİğİt, A., Altıner, D., Farınaccı, A., Nıcosıa, U. & Contı, M.A. 1991. Late Triassic–Aptian evolution of the Sakarya divergent margin: implication for the opening history of the northern Neo-Tethys, in the north-western Anatolia, Turkey. Geologica Romana 27, 81–99.
  • Le Maıtre, RW. 1989. A Classification of Igneous Rocks and Glossary of Terms. Recommendations of the IUGS Subcommission on the Systematics of Igneous Rocks. Blackwell Scientific Publications: Trowbridge, Wiltshire.
  • Manıar, P.D. & Pıccolı, P.M. 1989. Tectonic discrimination of granitoids. Bulletin of the American Geological Society 101, 635–643.
  • Matsuhısa, Y. 1979. Oxygen isotopic compositions of volcanic rocks from the East Japan island arcs and their bearing on petrogenesis. Journal of Volcanology and Geothermal Research 5, 271–296.
  • Matsuhısa, Y., Goldsmıth, J.R. & Clayton, R.N. 1979. Oxygen isotopic fractionation in the system quartz-albite-anorthite- water. Geochimica et Cosmochimica Acta 43, 1131–1140.
  • Ohmoto, H. 1986. Systematics of metal ratios and sulfur isotopic ratios in low-temperature base metal deposits. Terra Cognita 6, 134–135.
  • Okay, A.I., Tansel, İ. & Tüysüz, O. 2001. Obduction, subduction and collision as refl ected in the Upper Cretaceous–Lower Eocene sedimentary record of western Turkey. Geological Magazine 138, 117–142.
  • O’Neıl, J.R. & Chappell, B.W. 1977. Oxygen and hydrogen isotope relations in the Berridale batholith. Journal of the Geological Society, London 133, 559–571.
  • Peacock, M.A. 1931. Classification of igneous rock series. Journal of Geology 39, 54–67.
  • Pearce, J.A., Harrıs, N.B.,W. & Tındle, A.G. 1984. Trace-element discrimination diagrams for the tectonic interpretation of granitic rocks. Journal of Petrology 25, 956–983.
  • Patĩno Douce, A.E. 1999. What do experiments tell us about the relative contributions of crust and mantle to the origin of granitic magmas? In: Castro, A., Fernandez, C. & Vigneresse, J.L. (eds), Understanding Granites: Intergrating New and Classical Techniques. Geological Society, London, Special Publications 168, 55–75.
  • Pollard, P.J., Andrew, A.S. & Taylor, R.G. 1991. Fluid inclusion and stable isotope evidence for interaction between granites and magmatic hydrothermal fl uids during formation of disseminated and pipe-style mineralization at the Zaaiplaats Tin Mine. Economic Geology 86, 121–141.
  • Roberts, M.P. & Clemens, J.D. 1993. Origin of high-potassium, calcalkaline, I-type granitoids. Geology 21, 825–828.
  • Rogers, N.W., Hawkesworth, C.J., Parker, R.J. & Marsh, J.S. 1985. Th e geochemistry of potassium lavas from Vulsini, central Italy and implications for mantle enrichment processes beneath the Roman region. Contributions to Mineralogy and Petrology 90, 244–257.
  • Rogers, G. & Hawkesworth, C.J. 1989. A geochemical traverse across the North Chilean Andes: evidence for crust generation from the mantle wedge. Earth and Planetary Science Letters 91, 271–285.
  • Romıck, J.D., Kay, S.M. & Kay, R.W. 1992. Th e infl uence of amphibole fractionation on the evolution of calc-alkaline andesite and dacite tephra from the central Aleutians, Alaska. Contributions to Mineralogy and Petrology 112, 101–118.
  • Rumble, D. III. & Hoerıng, T.C. 1994. Analysis of oxygen and sulfur isotope ratios in oxide and sulfide minerals by spot heating with a carbon dioxide laser in a fl uorine atmosphere. Accounts of Chemical Research 27, 237–241.
  • Sajona, F.G., Maury, R.C., Bellon, H., Cotton, J. & Defant, M. 1996. High field strength elements of Pliocene-Pleistocene island-arc basalts Zamboanga Peninsula, Western Mindanao (Philippines). Journal of Petrology 37, 693–726.
  • Searle, M.P. & Fryer, B.J. 1986. Garnet-tourmaline- and muscovite-bearing leucogranites, gneisses and migmatites of the higher Himalayas from Zanska, Kulu, Lahoul and Kashmir. In: Coward, M.P. & Rıes, A.C. (eds), Collision Tectonics. Geological Society, London, Special Publications 19, 185–202.
  • Sharp, Z.D. 1990. A laser-based microanalytical method for in situ determination of oxygen isotope ratios in silicates and oxides. Geochimica et Cosmochimica Acta 54, 1353–1357.
  • Sheppard, S.M.F. 1986. Characterization and isotopic variations in natural waters. In: Valley, J.W., Taylor, H.P., Clayton, R.N. & O’Neıl, J.R. (eds), Stable Isotopes in High Temperature Geological Processes. Reviews in Mineralogy 16, 165–183.
  • Sheppard, S.M.F. & Harrıs, C. 1985. Hydrogen and oxygen isotope geochemistry of Ascension Island lavas and granites: variation with crystal fractionation and interaction with seawater. Contributions to Mineralogy and Petrology 91, 74–81.
  • Suzuokı, T. & Epsteın, S. 1976. Hydrogen isotope fractionation between OH-bearing minerals and water. Geochimica et Cosmochimica Acta 40, 1229–1240.
  • Şengör, A.M.C. & Yılmaz, Y. 1981. Tethyan evolution of Turkey: a plate tectonic approach. Tectonophysics 75, 181–241.
  • Taylor, B.E., Eıchelberger, J.C. & Westrıch, H.R. 1983. Hydrogen isotopic evidence of rhyolite magma degassing during shallow intrusion and eruption. Nature 306, 541–545.
  • Taylor, H.P. 1977. Water/rock interactions and the origin of H2O in granite batholiths. Journal of the Geological Society, London 133, 509–558.
  • Taylor, H.P. 1978. Oxygen and hydrogen isotope studies of plutonic granitic rocks. Earth and Planetary Science Letters 38, 177–210.
  • Taylor, H.P. 1979. Oxygen and hydrogen isotope relationships in hydrothermal mineral deposits. In: Barnes, H.L. (ed), Geochemistry of Hydrothermal Ore Deposits, 2th Edition. Wiley Interscience, New York, 236–277.
  • Taylor, H.P. 1980. Th e eff ects of assimilation of country rocks by magmas on 18O/16O and 87Sr/86Sr systematics in igneous rocks. Earth and Planetary Science Letters 47, 243–254.
  • Taylor, H.P. & Sheppard, S.M.F. 1986. Igneous rocks. I. Processes of isotopic fractionation and isotope systematics. In: Valley J.W., Taylor H.P.Jr. & O’Neil J.R. (eds), Stable Isotopes in High Temperature Geological Processes. Reviews in Mineralogy 16, 227–272.
  • Taylor, S.R. & McLennan S.M. 1985. Th e Continental Crust: Its Composition and Evolution. Blackwell, Oxford.
  • Tepper, J.H., Nelson, B.K., Bergantz, G.W. & Irvıng, A.J. 1993. Petrology of the Chilliwack batholith, North Cascades, Washington: generation of calc-alkaline granitoids by melting of mafic lower crust with variable water fugacity. Contributions to Mineralogy and Petrology 113, 333–351.
  • Thuy, N.T.B., Satır, M., Sıebel, W., Venneman, T. & Long, T.V. 2004. Geochemical and isotopic constraints on the petrogenesis of granitoids from the Dalat zone, southern Vietnam. Journal of Asian Earth Sciences 23, 467–482.
  • Vennemann, T.W. & O’Neıl, J.R. 1993. A simple and inexpensive method of hydrogen isotope and water analyses of minerals and rocks based on zinc reagent. Chemical Geology (Isotope Geoscience Section) 103, 227–234.
  • Whalen, J.B., Currıe, K.L. & Chappell, B.W. 1987. A-type granites: Geochemical characteristics and discrimination. Contributions to Mineralogy and Petrology 95, 420–436.
  • Whalen, J.B., Jenner, G.A., Longstaffe, F.J., Robert, F. & Garıepy, C. 1996. Geochemical and isotopic (O, Nd, Pb and Sr) constraints on A-type granite petrogenesis based on the Topsails igneous suite, Newfoundland Appalachians. Journal of Petrology 376, 7–60.
  • Whıte, A.J.R. & Chappell, B.W. 1983. Granitoid types and their distribution in the Lachlan Fold Belt, southeastern Australia. Geological Society of America Memoir 159, 21–34.
  • Wıckham, S.M. & Taylor, H.P. 1987. Stable isotope evidence for large-scale seawater infiltration in a regional metamorphic terrane: the Trois Seigneurs Massif, Pyrenees, France. Contributions to Mineralogy and Petrology 91, 122–137.
  • Wıckham, S.M., Alberts, A.D., Zanvılevıch, A.N., Lıtvınovsky, B.A., Bındeman, I.N. & Schauble, E.A. 1996. A stable isotope study of anorogenic magmatism in East Central Asia. Journal of Petrology 37, 1063–1095.
  • Wılson, M. 1989. Igneous Petrogenesis. A Global Tectonic Approach. Chapman and Hall, London.
  • Wu, F., Jahn, B., Wılde, S.A., Lo, C.-H., Tzen, F.Y., Lın, Q., Ge, W. & Sun, D. 2003. Highly fractionated I-type granites in NE China (II): isotopic geochemistry and implications for crustal growth in Phanerozoic. Lithos 67, 191–204.
  • Yılmaz, Y. 1981. Sakarya kıtasının güney kenarının evrimi [Evolution of the southern margin of the Sakarya Continent]. İstanbul Yerbilimleri 1, 33–52 [in Turkish with English abstract].
  • Yohannes, E. 1993. Geology and Petrology of the Beypazarı Granitoids. MSc Th esis, Graduate School of Natural and Applied Sciences, Geological Engineering Department, Middle East Technical University, Ankara.
  • Žak, K., Pudılová, M. & Breıter, K. 2005. Oxygen isotope study of the highly fractionated Podlesí granite system, Krušné hory Mts., Czech Republic. Bulletin of Geosciences 80, 139–143.
  • Zhao, Z.F. & Zheng, Y.F. 2003. Calculation of oxygen isotope fractionation in magmatic rocks. Chemical Geology 193, 59–80.
  • Zheng, Y.F. 1993. Calculation of oxygen isotope fractionation in anhydrous silicate minerals. Geochimica et Cosmochimica Acta 57, 1079–1091
  • Zussman, J. 1977. Physical Methods in Determinative Mineralogy. 2nd Edition, Academic Press. London.
Turkish Journal of Earth Sciences-Cover
  • ISSN: 1300-0985
  • Yayın Aralığı: Yılda 6 Sayı
  • Yayıncı: TÜBİTAK
Sayıdaki Diğer Makaleler

The Kemer Metamorphic Complex (NW Turkey): A Subducted Continental Margin of the Sakarya Zone

MESUT AYGÜL, GÜLTEKİN TOPUZ, ARAL I. OKAY, MUHARREM SATIR, HANS-PETER MEYER

Al-in-Hornblende Thermobarometry and Sr-Nd-O-Pb Isotopic Compositions of the Early Miocene Alaçam Granite in NW Anatolia (Turkey)

ALTUĞ HASÖZBEK, BURHAN ERDOĞAN, MUHARREM SATIR, WOLFGANG SIEBEL

Dating Subduction Events in East Anatolia, Turkey

ROLAND OBERHANSLI, ROMAIN BOUSQUET, OSMAN CANDAN & ARAL I. OKAY

Juvenil Neoproterozoyik Granitoyidlerindeki Arkeyan Zirkon U-Pb Yaş Çelişkisi, Orta Kuzey Sudan, Saharan Metakratonu

SHANG COSMAS KONGNYUY, MORTEANI GIULIO & MUHARREM SATIR

Archaean zircon U-Pb age paradox in juvenile neoproterozoic granitoids, Central North Sudan, Saharan Metacraton

Giulio MORTEANI, Cosmas Kongnyuy SHANG, Muharrem SATIR

Stable Isotope Composition of Hydrothermally Altered Rocks and Hydrothermal Minerals at the Los Azufres Geothermal Field, Mexico

IGNACIO S. TORRES-ALVARADO, MUHARREM SATIR

Beypazarı Granitoyidinin (KB Ankara, Batı-Orta Anadolu, Türkiye) Petrojenezi Üzerine Jeokimyasal ve İzotopik Sınırlamalar

YEŞİM YÜCEL ÖZTÜRK, CAHİT HELVACI & MUHARREM SATIR

Chromite-hosted Silicate Melt Inclusions from Basalts in the Stravaj Complex, Southern Mirdita Ophiolite Belt (Albania)

IZABELLA HAVANCSAK, FRIEDRICH KOLLER, JANOS KODOLANYI

Aspects of Final Disposal of Radioactive Waste in Germany

GUIDO BRACKE

Geochemical and isotopic constraints on petrogenesis of the Beypazarı granitoid, NW Ankara, western central Anatolia, Turkey

Yeşim ÖZTÜRK YÜCEL, Cahit HELVACI, Muharrem SATIR