Shape and size characteristics of bedload transported during winter storm events in the Cwm Treweryn stream,Brecon Beacons,South Wales

Birleşik Krallık'ın Güney Galler bölgesi, Brecon Beacons yöresinde, Usk Nehri'nin kolu olan Cwm Treweryn akarsuyunda 1995 yılının yağışlı geçen ilk döneminde, sepet-biçimli yatak yükü tuzakları kullanılarak yatak malzemesi yükü taşınma şekilleri incelenmiştir. Çalışmada özellikle belirli oranlardaki çakıl boyut grupları ve çakıl şekillerinin taşınma üzerine olan etkileri (seçici taşınma) incelenmiştir. 2.5 ile 19.5 debiler arasında değişen güçlü akıntılar kaydedilmiştir. Oldukça iri boyuttaki yatak yükü hariç tutulduğunda, yakalanan çakılların boyut özelliklerinin yüksek debi oranlarıyla çok az bir değişme gösterdiği tespit edilmiştir. Bu durum yatak yükü taşınmasının, yatakta hakim olan küçük boyuttaki çakılların hareketleri şiddetli olarak belirlemektedir. Hareket eden yatak yükünün şekilsel özellikleri hemen civardaki yatak material yüküyle karşılaştırılmış olup, bulgular, iri çakıllar (32-64 mm) içerisinde disk şekilli materyalin oranı yatak yükünü teşkil eden malzemeye oranla iki kat daha fazla, küremsi olanların oranı %5 daha fazla ve ovalimsi şekildeki çakılların oranının ise daha az olduğunu göstermiştir. Küçük bloklar (64-128 mm) içerisinde ise disk şeklindeki hareket eden materyalin oranı yatak yükünü teşkil eden malzemeye oranla %10 daha fazla, iri bloklar (> 128 mm) içerisinde ise egemendir. Aynı şekilde, bu grup içerisinde küremsilerin oranı en fazla buna karşılık yassı şekilli hiçbir iri blok hareket etmemiştir. Hareket eden materyal içerisinde, iri çakıllar grubunda küremsilerin ve iri bloklar içerisinde ise küremsi ve oval şeklindeki materyalin yüzde oranı artan debi ile birlikte artma göstermiştir. Boyanmış taş deneyleri ile ilgili olarak, yassı ve disk şeklindeki taşlar eşit ağırlıklara sahip olmalarına rağmen küremsi ve ovalimsi taşlara oranla hareket mesafeleri daha kısa olmuştur. Bulgular genel olarak gösteriyor ki, çakıl boyutunun üzerinde hareket ettiği pürüzlü yatak yüzeyi elemanlarına oranla daha büyük olduğu durumlarda, çakıl şeklinin seçici taşınma üzerindeki etkisi daha belirgin olmaktadir. Buna karşılık, oldukça pürüzlü yatak yüzeyleri üzerinde, herhangi bir şekle sahip çakılın hareketi yatak yüzeyini oluşturan unsurların hareketi ile sınırlıdır.

Güney Galler'in Brecon Beacons yöresinde bulunan Cwm Treweryn akarsuyu'nda taşınan yatak yükü malzemesinin şekil ve boyut özellikleri

Bedload transport in the Cwm Treweryn stream, a tributary of the Usk in the Brecon Beacons, South Wales, was investigated during a wet winter period in early 1995 using basket-type bedload traps and the tracing of painted clasts. The Cwm Treweryn is a typical mountain stream of the region with its gravel-bedload, flashy regime, high gradient and pool-riffle sequences. In particular, the study explored - for a range of categories of clast size - the nature of any influence of clast shape on bedload movement. Competent flows ranging from 2.5 to 19.5 m3 $s^{-1}$ (the latter close to bankfull flow) were monitored. The size composition of trapped bedload clasts varied little with peak flow magnitude except for the very largest clast fraction, suggesting that bedload transport was strongly influenced by movement of the dominant small cobble fraction. Shape composition of trapped bedload was compared with sampled bed material from the reach immediately upstream. For the large gravel fraction (32-64 mm), discs were twice as frequent and spheres 5% more frequent than in the upstream reach material. Rods were greatly under-represented. Discs were 10% over-represented in the small cobble fraction (64-128 mm) and dominant (though not over-represented) in the large cobble fraction (> 128 mm), in which spheres were distinctly over-represented and blades absent. The transported material was rounder and somewhat more spherical than the reach material. The percentage of spherical large gravel and spherical and rod-shaped small cobble clasts increased with peak discharge, whereas discs of all sizes tended to decline with peak discharge. Blades are over-represented in medium events but not moved in smaller competent events, and are under-represented at very high flows. In painted-clast experiments, blades - and to a lesser extent - discs moved shorter distances than spheres and rods of similar weight. Overall, the results suggest that the influence of clast shape on selective transport becomes much clearer with increase of clast size relative to the bed roughness elements. On rougher beds, on the other hand, the apparent behaviour of any particular shape may be the result of the behaviour of other shapes.

___

  • 1.ANDREWS, E.D. & SMITH, J.D. 1992. A theoretical model for calculating marginal bed load transport rates of gravel. In: BILLI, P., HEY, R.D., THORNE, C.R. & TACONNI, P. (eds), Dynamics of Gravel-bed Rivers, Wiley, Chicester, 41-52.
  • 2.ASHWORTH, P.J. & FERGUSON, R.I. 1989. Size selective entrainment of bedload in gravel bed streams. Water Resources Research 25, 627-634.
  • 3.ATALAY, İ. 1978. Türkiye'nin morfolojik ve jeolojik özelliklerinin aşınma ve birikme olaylarına etkileri. Enerji ve Tabii Kaynaklar Bakanlığı, Devlet Su İşleri Genel Müdürlüğü, I. Ulusal Erozyon ve Sedimentasyon Sempozyumu Tebliğleri, 60-71. Ankara [in Turkish].
  • 4.BARCLAY, W.J., TAYLOR, K. & THOMAS, L.P. 1988. Geology of the South Wales coalfield, Part V. The country around Merthyr Tydfil. Memoirs of the British Geological Survey. Her Majesty's Stationery Office, London, 3-6.
  • 5.BRADLEY, W.C., FAHNESTOCK, R.K. & ROWEKAMP, E.T. 1972. Coarse sediment transport by flood flow on Knik River, Alaska. Bulletin of the Geological Society of America 83, 1261 -1284.
  • 6.BRIGGS, D.J. 1977. Sources and Methods in Geography: Sediments. Butterworth, London.
  • 7.CAILLEUX, A. 1947. L'indice d'emousse: definition et premiere application. Compte Rendu sommaire des seances de la Societe Geologique de France 13, 250-252.
  • 8.CARLING, P.A. 1983. Threshold of coarse sediment transport in broad and narrow natural streams. Earth Surface Processes and Landforms 8, 1-18.
  • 9.CARLING, P.A., KELSEY, A. & GLAISTER, M.S. 1992. Effect of bed roughness, particle shape and orientation on initial motion criteria. In: BILLI, P., HEY, R.D., THORNE, C.R. & TACONNI, P. (eds), Dynamics of Gravel-Bed Rivers. Wiley, Chicester, 23-39. 10.CHURCH, M. & HASSAN, M. 1992. Size and distance of travel of unconstrained clasts on a streambed. Water Resources Research 28,299-303.
  • 11.DAVIS, A.P. 1900. Hydrography of Nicaragua. US Geological Survey 20th Annual Report, 1898-1999 20, 563-637.
  • 12.DEMİR, T. 2000. The Influence of Particle Shape on Bedload Transport in Coarse-Bed River Channels. PhD Thesis, University of Durham, Durham - England [Unpublished].
  • 13.Du BOYS, M.P. 1879. Le Rhone et les rivieres a lit affouillable (The Rhone and alluvial rivers). Annales de Ponts et Chaussees, 5th Series 18, 141-195.
  • 14.DERMAN, A.S. 1999. Braided river deposits related to progressive Miocene surface uplift in Kahramanmaraş area, SE Turkey. Geological Journal 34, 159-174.
  • 15.FENTON, J.D. & ABBOTT, J.E. 1977. Initial movement of grains on a stream bed: the effect of relative protrusion. Proceedings of the Royal Society 352A, 523-537.
  • 16.FERGUSON, R.I. 1992. Discussion of Hassan & Chruch . In: BILLI, P., HEY, R.D., THORNE, C.R. & TACONNI, P. (eds), Dynamics of Gravel-Bed Rivers. John Wiley, Chichester, 174.
  • 17.GINTZ, D. & SCHMIDT, K.H. 1991. Grobgeschiebetransport in einem Gebirgsbach als Funktion von Gerinnebettform und Geschiebemorphometrie. Zeitschrift für Geomorphologie, Supplementband 89, 63-72.
  • 18.GOMEZ, B. 1983. Temporal variation in bedload transport rates: the effect of progressive bed armouring. Earth Surface Processes and Landforms 8, 41-54.
  • 19.GOMEZ, B. 1991. Bedload Transport. Earth Science Reviews 31, 89-132.
  • 20.HASSAN, M. & CHURCH, M. 1990. The movement of individual grains on the streambed. In: BILLI, P., HEY, R.D., THORNE, C.R. & TACONNI. P. (eds),Dynamies of Gravel-Bed Rivers. Wiley, Chicester, 159-175.
  • 21.HASSAN, M.A., CHURCH, M. & SCHICK, A.P. 1991. Distance of movement of coarse particles in gravel bed streams. Water Resources Research 27, 503-511.
  • 22.HAYWARD, J.A. 1980. Hydrology and Stream Sediment from Torlesse Stream Catchment Special Publication 17, Tussock Grasslands and Mountain Lands Institute, Lincoln College, Canterbury, New Zealand, 236 p.
  • 23.HELLEY, E.J. 1969. Field Measurement of the Initiation of Large Bed Particle Motion in Blue Creek near Klamath, California. United States Geological Survey Professional Paper 562-G, 19 p.
  • 24.JOHANSSON, C.E. 1976. Structural studies of frictional sediments. Oeografiska Annaler 58A, 210-301.
  • 25.KIRCHNER, J.W., DIETRICH, W.D., ISEYA, F. & IKEDA, H. 1990. The variability of critical shear stress, friction angle and grain protrusion in water-worked sediments. Sedimentology 37, 647-672.
  • 26.KOMAR, P.D. & Li, Z. 1986. Pivoting analyses of the selective entrainment of sediments by shape and size with application to gravel threshold. Sedimentology 33, 425-436.
  • 27.KOMAR, P.D. & SHIH, S.M. 1992. Equal mobility versus changing bedload grain sizes in gravel-bed streams, In: BILLI, P., HEY, R.D., THORNE, C.R. & TACONNI, P. (eds), Dynamics of Gravel-bed Rivers. Wiley, Chicester, 73-93.
  • 28.KRUMBEIN, W. 1941. Measurements and geological significance of shape and roundness of sedimentary particles. Journal of Sedimentary Petrology 11, 64-72.
  • 29.KRUMBEIN, W. 1942. Settling-velocity and flume-behaviour of non-spherical particles. Transactions of the American Geophysical Union 23, 621-632.
  • 30.LANE, E.W. & BORLAND, W.M. 1951. Estimation of bedload. Transaction American Geophysics Union 32, 121-123.
  • 31.LANE, E.W. & CARSON, E.J. 1954. Some observations on the effect of particle shape on the movement of coarse sediments. Transactions of the American Geophysical Union 35, 453-462.
  • 32.LAUFFER, H. & SOMMER, N. 1982. Studies on sediment transport in mountain streams of the eastern Alps. Proceedings of the 14th Congress International Commission on Large Dams. Rio De Janeiro, Brazil, 431-453.
  • 33.MEADE, R.H., YUZYK, T.R. & DAY, J.T. 1990. Movement and storage of sediment in rivers of the United States and Canada. In: WOLMAN SIMONS, M.G. & RIGGS, H.C. (eds), Geology of North America: Surface Water Hydrology. Geological Society of America, Boulder, CO, 255-280. 34.MELAND, N. & NORRMAN, J.O. 1966. Transport velocities and single particles in bedload motion. Geografiska Annaler 48, 165-182.
  • 35.REID, I., FROSTICK, L.E. & LAYMAN, J.T. 1985. The incidence and nature of bedload transport during flood flows in coarse-grained alluvial channels. Earth Surface Processes and Landforms 10, 33-44.
  • 36.SCHMIDT, H.K. & ERGENZINGER, P. 1992. Bedload entrainment travel lengths, step lengths, rest periods-studied with passive (iron, magnetic) and active (radio) tracer techniques. Earth Surface Processes and Landforms 17, 147-165.
  • 37.SCHMIDT, H.K. & GINTZ, D. 1995. Results of bedload tracer experiments in a mountain river. In: HICKIN, E.J. (ed), River Geomorphology. Wiley, Chichester, 37-54.
  • 38.SHAKESBY, R.A. 1979. A simple device for measuring the primary axes of clasts. British Geomorphological Research Group Technical Bulletin 24, 11-13.
  • 39.SIMONS, D.B. & ŞENTÜRK, F. 1977. Sediment Transport Technology. Water Resources Publications, Fort Collins, Colorado, 807 p.
  • 40.SNEED, E.D. & FOLK, R.L. 1958. Pebbles in the lower Colorado River, Texas: a study in particle morphogenesis. Journal of Geology 66, 114-150.
  • 41.STEIDTMANN, JR. 1982. Size-density sorting of sand-size spheres during deposition from bedload transport and implications concerning hydraulic equivalence. Sedimentology 29, 877-883.
  • 42.STOTT, T. & SAWYER, A. 1998. Oast travel distances and abrasion rates in coarse upland channels determined using magnetically tagged bedload tracers. In: FOSTER, I.D.L. (ed), Tracers in Geomorphology. Wiley, Chichester, 389-399.
  • 43.SUNDBORG, A. 1956. The River Klaralven a study of fluvial processes. Geografiska Annaler 38, 127-316.
  • 44.THOMPSON, R.D., MANNION, A.M., MITCHELL, C.W., PARRY, M. & TOWNSHEND, J.R.G. 1992. Processes in Physical Geography. Longman Scientific and Technical, Wiley, England, 380 p.
  • 45.WARBURTON, J. & DEMİR, T. 1998. Preliminary results of a field experiment investigating the influence of particle shape on the transport of coarse fluvial gravel. In: FOSTER, I.D.L. (ed), Tracers in Geomorphology. Wiley, Chichester, 400-410.
  • 46.WIBERG, P.L. & SMITH, J.D. 1987. Calculations of shear stress for motion of uniform and heterogeneous sediments. Water Resources Research 23, 1417-1480.
  • 47.WOLMAN, M.G. 1954. A method of sampling coarse river-bed material. Transactions of the American Geophysical Union 35, 951-955.
  • 48.ZINGG, T.H. 1935. Beitrag zur Schotteranalyse. Schweizerische Mineralogische und Petrographische Mitteilungen 15, 39-140.