Present state of knowledge and new geochemical constraints on the central part of the Mexican Volcanic Belt and comparison with the Central American Volcanic Arc in terms of near and far trench magmas

Abstract: A brief critical review is presented of the geological, geophysical, geochemical, and plate tectonic evidence for the origin and evolution of the central part of the Mexican Volcanic Belt (C-MVB). Databases were constructed for the C-MVB from new and published data as well as for the Central American Volcanic Arc (CAVA), other continental and island arcs, continental rifts or extensional areas, and collision zones. Conventional procedures as well as statistical techniques of multidimensional tectonic discrimination diagrams and significance tests were used to interpret the data. A subdivision of the databases for the C-MVB and CAVA into near the trench or front-arc and far from the trench or back-arc magmas helped to demonstrate the lack of slab input for the C-MVB and the presence of a classic arc-trench system for the CAVA. The use of software IgRoCS, DODESSYS, UDASYS, TecD, and TecDIA provided the following conclusions: 1) basic magmas in the C-MVB that originated in the mantle without the involvement of the subducted slab represent a continental rift setting; 2) C-MVB acid and intermediate magmas that originated, respectively, from the crust and mixed mantle-crustal sources do not show a clear influence of the present subducted slab and represent the tectonic setting of the older crustal and mixed mantle-crustal source rocks; and 3) all rocks in the CAVA were derived from the involvement of the subducted slab and represent a classical continental arc system related to the subduction of the Cocos plate beneath the Caribbean plate, whereas CAVA back-arc rocks originated mainly in the mantle, probably with much less involvement of the subducted slab. Reinterpretation of the Sr, Nd, Pb, and Hf isotopic data supports these inferences. I propose a new tectono-petrogenetic model based on the continuation of the extensional tectonics related to the triple rift system in the western part of the MVB.

Present state of knowledge and new geochemical constraints on the central part of the Mexican Volcanic Belt and comparison with the Central American Volcanic Arc in terms of near and far trench magmas

Abstract: A brief critical review is presented of the geological, geophysical, geochemical, and plate tectonic evidence for the origin and evolution of the central part of the Mexican Volcanic Belt (C-MVB). Databases were constructed for the C-MVB from new and published data as well as for the Central American Volcanic Arc (CAVA), other continental and island arcs, continental rifts or extensional areas, and collision zones. Conventional procedures as well as statistical techniques of multidimensional tectonic discrimination diagrams and significance tests were used to interpret the data. A subdivision of the databases for the C-MVB and CAVA into near the trench or front-arc and far from the trench or back-arc magmas helped to demonstrate the lack of slab input for the C-MVB and the presence of a classic arc-trench system for the CAVA. The use of software IgRoCS, DODESSYS, UDASYS, TecD, and TecDIA provided the following conclusions: 1) basic magmas in the C-MVB that originated in the mantle without the involvement of the subducted slab represent a continental rift setting; 2) C-MVB acid and intermediate magmas that originated, respectively, from the crust and mixed mantle-crustal sources do not show a clear influence of the present subducted slab and represent the tectonic setting of the older crustal and mixed mantle-crustal source rocks; and 3) all rocks in the CAVA were derived from the involvement of the subducted slab and represent a classical continental arc system related to the subduction of the Cocos plate beneath the Caribbean plate, whereas CAVA back-arc rocks originated mainly in the mantle, probably with much less involvement of the subducted slab. Reinterpretation of the Sr, Nd, Pb, and Hf isotopic data supports these inferences. I propose a new tectono-petrogenetic model based on the continuation of the extensional tectonics related to the triple rift system in the western part of the MVB.

___

  • Abratis M, Wörner G (2001). Ridge collision, slab-window formation, and the flux of Pacific asthenosphere into the Caribbean realm. Geology 29: 127–130.
  • Absar N, Sreenivas B (2015). Petrology and geochemistry of greywackes of the ~1.6 Ga Middle Aravalli Supergroup, northwest India: evidence for active margin processes. Int Geol Rev 57: 134–158.
  • Agostini S, Corti G, Doglioni C, Carminati E, Innocenti F, Tonarini S, Manetti P, Di Vincenzo G, Montanari D (2006). Tectonic and magmatic evolution of the active volcanic front in El Salvador: insight into the Berlín and Ahuachapán geothermal areas. Geothermics 35: 368–408.
  • Agostini S, Doglioni C, Innocenti F, Manetti P, Tonarini S, Savascin MY (2007). The Transition from Subduction-Related to Intraplate Neogene Magmatism in the Western Anatolia and Aegean Area. Cenozoic Volcanism in the Mediterranean Area. Boulder, Colorado, USA: Geological Society of America Special Paper.
  • Agostini S, Tokçaer M, Savaşçın MY (2010). Volcanic rocks from Foça-Karaburun and Ayvalik-Lesvos grabens (western Anatolia) and their petrogenetic-geodynamic significance. Turk J Earth Sci 19: 157–184.
  • Agrawal S, Guevara M, Verma SP (2008). Tectonic discrimination of basic and ultrabasic rocks through log-transformed ratios of immobile trace elements. Int Geol Rev 50: 1057–1079.
  • Aguillón-Robles A, Tristán-González M, Aguirre-Díaz GJ, López- Doncel RA, Bellon H, Martínez-Esparza G (2014). Eocene to Quaternary mafic-intermediate volcanism in San Luis Potosí, central Mexico: the transition from Farallon plate subduction to intra-plate continental magmatism. J Volcanol Geotherm Res 276: 152–172.
  • Aguillón-Robles A, Tristán-González M, López-Doncel RA, García- Arreola ME, Almaguer-Rodríguez JL, Maury RC (2012). Trace elements geochemistry and origin of volcanic units from the San Luis Potosí and Río Santa María volcanic fields, Mexico: the bearing of ICP-QMS data. Geofís Int 51: 293–308.
  • Aguirre-Díaz GJ (2001). Recurrent magma mingling in successive ignimbrites from Amealco caldera, central Mexico. Bull Volcanol 63: 238–251.
  • Aguirre-Díaz GJ, Dubois M, Laureyns J, Schaaf P (2002). Nature and P-T conditions of the crust beneath the central Mexican Volcanic Belt based on a Precambrian crustal xenolith. Int Geol Rev 44: 222–242.
  • Aguirre-Díaz GJ, López-Martínez M (2009). Geologic evolution of the Donguinyó-Huichapan caldera complex, central Mexican Volcanic Belt, Mexico. J Volcanol Geotherm Res 179: 133–148.
  • Aguirre-Díaz GJ, McDowell FW (1999). Volcanic evolution of the Amealco caldera, central Mexico. In: Delgado-Granados H, Aguirre-Díaz G, Stock JM, editors. Cenozoic Tectonics and Volcanism of Mexico. Boulder, Colorado, USA: Geological Society of America Special Paper, pp. 1–14.
  • Agustín-Flores J, Siebe C, Guilbaud MN (2011). Geology and geochemistry of Pelagatos, Cerro del Agua, and Dos Cerros monogenetic volcanoes in the Sierra Chichinautzin Volcanic Field, south of México City. J Volcanol Geotherm Res 201: 143–162.
  • Aitchison J (1986). The Statistical Analysis of Compositional Data. London, UK: Chapman and Hall.
  • Akal C (2003). Mineralogy and geochemistry of melilite leucitites, Balçıkhisar, Afyon (Turkey). Turk J Earth Sci 12: 215–239.
  • Alam MA, Chandrasekharam D, Vaselli O, Capaccioni B, Manetti P, Santo PB (2004). Petrology of the prehistoric lavas and dyke of the Barren Island, Andaman Sea, Indian ocean. Proc Indian Acad Sci (Earth Planet Sci) 113: 715–722.
  • Alaniz-Álvarez SA, Nieto-Samaniego AF (2007). The Taxco-San Miguel de Allende fault system and the Trans-Mexican Volcanic Belt: two tectonic boundaries in central México active during the Cenozoic, Geology of Mexico. In: Celebrating the Centenary of the Geological Society of Mexico. Boulder, CO, USA: The Geological Society of America, pp. 301–316.
  • Alaniz-Alvarez SA, Nieto-Samaniego AF, Ferrari L (1998). Effect of strain rate in the distribution of monogenetic and polygenetic volcanism in the Transmexican Volcanic Belt. Geology 26:
  • Aldanmaz E, Pearce JA, Thirlwall MF, Mitchell JG (2000). Petrogenetic evolution of late Cenozoic, post-collision volcanism in western Anatolia, Turkey. J Volcanol Geotherm Res 102: 67–95.
  • Allan JF (1986). Geology of the northern Colima and Zacoalco grabens, southwest Mexico: Late Cenozoic rifting in the Mexican Volcanic Belt. Geol Soc Am Bull 97: 473–485.
  • Alvarado GE, Soto GJ, Schmincke HU, Bolge LL, Sumita M (2006). The 1968 andesitic lateral blast eruption at Arenal volcano, Costa Rica. J Volcanol Geotherm Res 157: 9–33.
  • Anguita F, Verma SP, Márquez A, Vasconcelos FM, López I, Laurrieta A (2001). Circular features in the Trans-Mexican Volcanic Belt. J Volcanol Geotherm Res 107: 265–274.
  • Arce JL, Cervantes KE, Macías JL, Mora JC (2005). The 12.1 ka Middle Toluca Pumice: A dacitic Plinian–subplinian eruption of Nevado de Toluca in Central Mexico. J Volcanol Geotherm Res 147: 125–143.
  • Arce JL, Layer PW, Lassiter JC, Benowitz JA, Macías JL, Ramírez- Espinosa J (2013). 40Ar/39Ar dating, geochemistry, and isotopic analyses of the Quaternary Chichinautzin volcanic field, south of Mexico City: implications for timing, eruption rate, and distribution of volcanism. Bull Volcanol 75: 1–25.
  • Arce JL, Macías JL, Vázquez-Selem L (2003). The 10.5 ka Plinian eruption of Nevado de Toluca volcano, Mexico: stratigraphy and hazard implications. Geol Soc Am Bull 115: 230–248.
  • Arce JL, Macías R, García Palomo A, Capra L, Macías JL, Layer P, Rueda H (2008). Late Pleistocene flank collapse of Zempoala volcano (central Mexico) and the role of fault reactivation. J Volcanol Geotherm Res 177: 944–958.
  • Armstrong-Altrin JS (2015). Evaluation of two multidimensional discrimination diagrams from beach and deep-sea sediments from the Gulf of Mexico and their application to Precambrian clastic sedimentary rocks. Int Geol Rev 57: 1444–1459.
  • Avellán DR, Macías JL, Pardo N, Scolamacchia T, Rodriguez D (2012). Stratigraphy, geomorphology, geochemistry and hazard implications of the Nejapa volcanic field, western Managua, Nicaragua. J Volcanol Geotherm Res 213–214: 51–71.
  • Ayabe M, Takanashi K, Shuto K, Ishimoto H, Kawabata H (2012). Petrology and geochemistry of adakitic dacites and high-MgO andesites, and related calc-alkaline dacites from the Miocene Okoppe volcanic field, N Hokkaido, Japan. J Petrol 53: 547– 588.
  • Bardintzeff JM, Deniel C (1992). Magmatic evolution of Pacaya and Cerro Chiquito volcanological complex, Guatemala. Bull Volcanol 54: 267–283.
  • Barnett V, Lewis T (1994). Outliers in Statistical Data. Chichester, UK: John Wiley & Sons.
  • Barrat JA, Jahn BM, Fourcade S, Joron JL (1993). Magma genesis in an ongoing rifting zone: the Tadjoura Gulf (Afar area). Geochim Cosmochim Acta 57: 2291–2302.
  • Barrat JA, Joron JL, Taylor RN, Fourcade S, Nesbitt RW, Jahn BM (2003). Geochemistry of basalts from Manda Hararo, Ethiopia: LREE-depleted basalts in Central Afar. Lithos 69: 1–13.
  • Bau M, Knittel U (1993). Significance of slab-derived partial melts and aqueous fluids for the genesis of tholeiitic and calc-alkaline island-arc basalts: evidence from Mt. Arayat, Philippines. Chem Geol 105: 233–251.
  • Beard BL, Johnson CM (1997). Hafnium isotope evidence for the origin of Cenozoic basaltic lavas from the southwestern United States. J Geophys Res 102: 20149–20178.
  • Beate B, Monzier M, Spikings R, Cotten J, Silva J, Bourdon E, Eissen JP (2001). Mio-Pliocene adakite generation related to flat subduction in southern Ecuador: the Quimsacocha volcanic center. Earth Planet Sci Lett 192: 561–570.
  • Beccaluva L, Bianchini G, Natali C, Siena F (2009). Continental flood basalts and mantle plumes: a case study of the northern Ethiopian Plateau. J Petrol 50: 1377–1403.
  • Bertrand H (1991). The Mesozoic tholeiitic province of northwest Africa: a volcano-tectonic record of the early opening of Central Atlantic. In: Kampunzu AB , Lubala RT, editors. Magmatism in Extensional Structural Settings. Berlin, Germany: Springer, pp.
  • Besch T, Verma SP, Kramm U, Negendank JFW, Tobschall HJ, Emmermann R (1995). Assimilation of sialic crustal material by volcanics of the easternmost extension of the Trans-Mexican Volcanic Belt: evidence from Sr and Nd isotopes. Geofís Int 34: 263–282.
  • Best MG, Christiansen EH (2001). Igneous Petrology. Waltham, MA, USA: Blackwell Science.
  • Bevington PR, Robinson DK (2003). Data Reduction and Error Analysis for the Physical Sciences. Boston, MA, USA: McGraw- Hill.
  • Bindeman IN, Leonov VL, Izbekov PE, Ponomareva VV, Watts KE, Shipley NK, Perepelov AB, Bazanova LI, Jicha BR, Singer BS et al. (2010). Large-volume silicic volcanism in Kamchatka: Ar– Ar and U–Pb ages, isotopic, and geochemical characteristics of major pre-Holocene caldera-forming eruptions. J Volcanol Geotherm Res 189: 57–80.
  • Bjİrnerud MG, Austrheim H (2004). Inhibited eclogite formation: the key to the rapid growth of strong and buoyant Archean continental crust. Geology 32: 765–768.
  • Blatter DL, Carmichael ISE, Deino AL, Renne PR (2001). Neogene volcanism at the front of the central Mexican volcanic belt: basaltic andesites to dacites, with contemporaneous shoshonites and high-TiO2 lava. Geol Soc Am Bull 113: 1324–
  • Blatter DL, Farmer GL, Carmichael ISE (2007). A north-south transect across the Central Mexican Volcanic Belt at ~100°W: spatial distribution, petrological, geochemical, and isotopic characteristics of Quaternary volcanism. J Petrol 48: 901–950.
  • Blatter DL, Hammersley L (2010). Impact of the Orozco Fracture Zone on the Central Mexican Volcanic Belt. J Volcanol Geotherm Res 197: 67–84.
  • Bloomfield K (1973). The age and significance of Tenango basalt, central Mexico. Bull Volcanol 37: 586–595.
  • Bloomfield K (1975). A late-Quaternary monogenetic volcano field in central Mexico. Geol Rundsch 64: 476–497.
  • Bolge LL, Carr MJ, Feigenson MD, Alvarado GE (2006). Geochemical stratigraphy and magmatic evolution at Arenal volcano, Costa Rica. J Volcanol Geotherm Res 157: 34–48.
  • Booden MA, Smith IEM, Black PM, Mauk JL (2011). Geochemistry of the Early Miocene volcanic succession of Northland, New Zealand, and implications for the evolution of subduction in the Southwest Pacific. J Volcanol Geotherm Res 199: 25–37.
  • Bora S, Kumar S (2015). Geochemistry of biotites and host granitoid plutons from the Proterozoic Mahakoshal Belt, central India tectonic zone: implication for nature and tectonic setting of magmatism. Int Geol Rev 57: 1686–1706.
  • Boudal (1985). Pétrologie d’un grand volcan andésitique mexicain: le Popocatépetl. PhD, Clermont-Ferrand II University, Aubiere, France (in French).
  • Bouyo MH, Zhao Y, Penaye J, Zhang SH, Njel UO (2015). Neoproterozoic subduction-related metavolcanic and metasedimentary rocks from the Rey Bouba Greenstone Belt of north-central Cameroon in the Central African Fold Belt: new insights into a continental arc geodynamic setting. Precamb Res 261: 40–53.
  • Brueseke ME, Hart WK (2009). Intermediate composition magma production in an intracontinental setting: Unusual andesites and dacites of the mid-Miocene Santa Rosa–Calico volcanic field, Northern Nevada. J Volcanol Geotherm Res 188: 197– 213.
  • Bryant JA, Yogodzinski GM, Churikova TG (2011). High-Mg# andesitic lavas of the Shisheisky complex, northern Kamchatka: implications for primitive calc-alkaline magmatism. Contrib Mineral Petrol 161: 791–810.
  • Bryant JA, Yogodzinski GM, Hall ML, Lewicki JL, Bailey DG (2006). Geochemical constraints on the origin of volcanic rocks from the Andean Northern volcanic zone, Ecuador. J Petrol 47: 1147–1175.
  • Burbach GV, Frohlich C, Pennington WD, Matumoto T (1984). Seismicity and tectonics of the subducted Cocos plate. J Geophys Res 89: 7719–7735.
  • Cai Y, LaGatta A, Goldstein SL, Langmuir CH, Gómez-Tuena A, Martín-Del Pozzo AL, Carrasco-Nşñez G (2014). Hafnium isotope evidence for slab melt contributions in the Central Mexican Volcanic Belt and implications for slab melting in hot and cold slab arcs. Chem Geol 377: 45–55.
  • Calmus T, Aguillón-Robles A, Maury RC, Bellon H, Benoit M, Cotten J, Bourgois J, Michaud F (2003). Spatial and temporal evolution of basalts and magnesian andesites (“bajaites”) from Baja California, Mexico: the role of slab melts. Lithos 66: 77–
  • Calvache VML, Williams SN (1997). Geochemistry and petrology of the Galeras Volcanic Complex, Colombia. J Volcanol Geotherm Res 77: 21–38.
  • Cameron BI, Walker JA, Carr MJ, Patino LC, Matías O, Feigenson MD (2002). Flux versus decompression melting at stratovolcanoes in southeastern Guatemala. J Volcanol Geotherm Res 119: 21–50.
  • Camp VE, Roobol MJ, Hooper PR (1991). The Arabian continental alkali basalt province: part II. Evolution of Harrats Khaybar, Ithnayn, and Kura, Kingdom of Saudi Arabia. Geol Soc Am Bull 103: 363–391.
  • Campos-Enríquez JO, Alatorre-Zamora MA, Keppie JD, Belmonte- Jiménez SI, Ramón-Márquez VM (2014). Interpretation of gravity profiles across the northern Oaxaca terrane, its boundaries and the Tehuacán Valley, southern Mexico. J South Am Earth Sci 56: 396–408.
  • Campos-Enríquez JO, Alatriste-Vilchis DR, Huizar-Álvarez R, Marines-Campos R, Alatorre-Zamora MA (2003). Subsurface structure of the Tecocomulco sub-basin (northeastern Mexico basin), and its relationship to regional tectonics. Geofís Int 42: 3–24.
  • Campos-Enríquez JO, Corbo-Camargo F, Arzate-Flores J, Keppie JD, Arango-Galván C, Unsworth M, Belmonte-Jiménez SI (2013). The buried southern continuation of the Oaxaca-Juarez terrane boundary and Oaxaca Fault, southern Mexico: Magnetotelluric constraints. J South Am Earth Sci 42: 62–73.
  • Campos-Enríquez JO, Sánchez-Zamora O (2000). Crustal structure across southern Mexico inferred from gravity data. J South Am Earth Sci 13: 479–489.
  • Capra L, Macías JL, Garduño VH (1997). The Zitácuaro Volcanic Complex, Michoacán, Mexico: magmatic and eruptive history of a resurgent caldera. Geofís Int 36: 161–179.
  • Carmichael ISE, Frey HM, Lange RA, Hall CM (2006). The Pleistocene cinder cones surrounding Volcán Colima, Mexico re-visited: eruption ages and volumes, oxidation states, and sulfur content. Bull Volcanol 68: 407–419.
  • Carr MJ (1984). Symmetrical and segmented variation of physical and geochemical characteristics of the Central American volcanic front. J Volcanol Geotherm Res 20: 231–252.
  • Carr MJ, Feigenson MD, Bennett EA (1990). Incompatible element and isotopic evidence for tectonic control of source mixing and melt extraction along the Central American arc. Contrib Mineral Petrol 105: 369–380.
  • Carr MJ, Rose WI Jr (1986). CENTAM – a data base of Central American volcanic rocks. J Volcanol Geotherm Res 33: 239–
  • Carr MJ, Rose WI, Stoiber RE (1982). Central America. In: Thorpe RS, editor. Andesites. Chichester, UK: John Wiley & Sons, pp.
  • Carr MJ, Saginor I, Alvarado GE, Bolge LL, Lindsay FN, Milidakis K, Turrin BD, Feigenson MD, Swisher CC 3rd (2007). Element fluxes from the volcanic front of Nicaragua and Costa Rica. Geochem Geophys Geosys 8: Q06001.
  • Cassidy M, Taylor RN, Palmer MR, Cooper RJ, Stenlake C, Trofimovs J (2012). Tracking the magmatic evolution of island arc volcanism: Insights from a high-precision Pb isotope record of Montserrat, Lesser Antilles. Geochem Geophys Geosys 13: 1–19.
  • Castillo PR, Newhall CG (2004). Geochemical constraints on possible subduction components in lavas of Mayon and Taal volcanoes, southern Luzon, Philippines. J Petrol 45: 1089–1108.
  • Cathelineau M, Izquierdo G, Vázquez GR, Guevara M (1991). Deep geothermal wells in the Los Azufes (Mexico) caldera: volcanic basement stratigraphy based on major-element analysis. J Volcanol Geotherm Res 47: 149–159.
  • Cathelineau M, Oliver R, Nieva D (1987). Geochemistry of volcanic series of the Los Azufres geothermal field (Mexico). Geofís Int 26: 273–290.
  • Cavazos Tovar JG (2006). Magmatismo adakítico en el volcán Tancítaro, Michoacán, México. MSc, Universidad Nacional Autónoma de México, Mexico City, Mexico (in Spanish).
  • Cervantes P, Wallace PJ (2003). Role of H2O in subduction-zone magmatism: new insights from melt inclusions in high-Mg basalts from central Mexico. Geology 31: 235–238.
  • Chadwick J, Perfit M, McInne B, Kamenov G, Plank T (2009). Arc lavas on both sides of a trench: Slab window effects at the Solomon Islands triple junction, SW Pacific. Earth Planet Sci Lett 279: 293–302.
  • Chadwick JP, Troll VR, Ginibre RG, Morgan D, Gertisser R, Waight TE, Davidson JP (2007). Carbonate assimilation at Merapi Volcano, Java, Indonesia: insights from crystal isotope stratigraphy. J Petrol 48: 1793–1812.
  • Chan LH, Leeman WP, You CF (1999). Lithium isotopic composition of Central American Volcanic Arc lavas: implications for modification of subarc mantle by slab-derived fluids. Chem Geol 160: 255–280.
  • Chauvel C, Jahn BM (1984). Nd-Sr isotope and REE geochemistry of alkali basalts from the Massif Central, France. Geochim Cosmochim Acta 48: 93–110.
  • Chen JL, Xu JF, Wang BD, Kang ZQ, Jie L (2010). Origin of Cenozoic alkaline potassic volcanic rocks at KonglongXiang, Lhasa terrane, Tibetan Plateau: products of partial melting of a mafic lower-crustal source? Chem Geol 273: 286–299.
  • Chesley J, Ruiz J, Righter K, Ferrari L, Gomez-Tuena A (2002). Source contamination versus assimilation: an example from the Trans- Mexican Volcanic Arc. Earth Planet Sci Lett 195: 211–221.
  • Chiaradia M, Müntener O, Beate B (2011). Enriched basaltic andesites from mid-crustal fractional crystallization, recharge, and assimilation (Pilavo volcano, Western Cordillera of Ecuador). J Petrol 52: 1107–1141.
  • Choi AH, Mukasa SB, Kwon ST, Andronikov AV (2006). Sr, Nd, Pb and Hf isotopic compositions of late Cenozoic alkali basalts in South Korea: evidence for mixing between the two dominant asthenospheric mantle domains beneath East Asia. Chem Geol 232: 134–151.
  • Churikova T, Dorendorf F, Wörner G (2001). Sources and fluids in the mantle wedge below Kamchatka, evidence from across-arc geochemical variation. J Petrol 42: 1567–1593.
  • Class C, Altherr R, Volker F, Eberz G, McCulloch MT (1994). Geochemistry of Pliocene to Quaternary alkali basalts from the Huri Hills, northern Kenya. Chem Geol 113: 1–22.
  • Cruz-Huicochea R, Verma SP (2013). New critical values for F and their use in the ANOVA and Fisher’s F tests for evaluating geochemical reference material granite G-2 (U.S.A.) and igneous rocks from the Eastern Alkaline Province (Mexico). J Iber Geol 39: 13–30.
  • D’Atonio M (2008). Reconstrucción de los eventos eruptivos de hace ~28 y ~13 ka asociados el emplazamiento de flujos de bloques y ceniza en el volcán Nevado de Toluca (México). PhD, Universidad Nacional Autónoma de México, Mexico City, Mexico (in Spanish).
  • Daoud MA, Maury RC, Barrat JA, Taylor RN, Le Gall B, Guillou H, Cotten J, Rolet J (2010). A LREE-depleted component in the Afar plume: further evidence from Quaternary Djibouti basalts. Lithos 114: 327–336.
  • Davidson J, Wilson M (2011). Differentiation and source processes at Mt Pelée and the Quill; active volcanoes in the Lesser Antilles Arc. J Petrol 52: 1493–1531.
  • Davidson JP, Ferguson KM, Colucci MT, Dungan MA (1988). The origin and evolution of magmas from the San Pedro-Pellado volcanic complex, S. Chile: multicomponent sources and open system evolution. Contrib Mineral Petrol 100: 429–445.
  • Davis JM, Hawkesworth CJ (1995). Geochemical and tectonic transitions in the evolution of the Mogollon-Datil volcanic field, New Mexico, U.S.A. Chem Geol 119: 31–53.
  • Defant MJ, Jackson TE, Drummond MS, De Boer JZ, Bellon H, Feigenson MD, Maury RC, Stewart RH (1992). The geochemistry of young volcanism throughout western Panama and southeastern Costa Rica: an overview. J Geol Soc London 149: 569–579.
  • Delgado H, Molinero R, Cervantes P, Nieto-Obregón J, Lozano-Santa Cruz R, Macías-González HL, Mendoza-Rosales C, Silva- Romo G (1998). Geology of Xitle volcano in southern Mexico City - a 2000-year-old monogenetic volcano in an urban area. Rev Mex Cienc Geol 15: 115–131.
  • Demant A (1981). L’axe néo-volcanique transmexicain, étude volcanologique et pétrographique, signification géodynamique. PhD, Université de Droit, d’Economie et des Sciences d’Aix- Marseille, Marseille, France (in French).
  • DeMets C, Stein S (1990). Present-day kinematics of the Rivera plate and implications for tectonics in southwestern Mexico. J Geophys Res 95: 21931–21948.
  • DeMets C, Wilson DS (1997). Relative motions of the Pacific, Rivera, North American, and Cocos plates. J Geophys Res 102: 2789–
  • Díaz-González L, Cruz-Huicochea R (2013). Application of discordancy and significance statistical tests for the comparison of dacitic volcanism from the central part of the Mexican Volcanic Belt. Nova Scient 6: 158–178.
  • Dilek Y, Imamverdiyev N, Altunkaynak S (2010). Geochemistry and tectonics of Cenozoic volcanism in the Lesser Caucasus (Azerbaijan) and the peri-Arabian region: collision-induced mantle dynamics and its magmatic fingerprint. Int Geol Rev 52: 536–578.
  • Dobson PF, Mahood GA (1985). Volcanic stratigraphy of the Los Azufres geothermal area, Mexico. J Volcanol Geotherm Res 25: 273–287.
  • Dorendorf F, Churikova T, Koloskov A, Wörner G (2000). Late Pleistocene to Holocene activity at Bakening volcano and surrounding monogenetic centers (Kamchatka): volcanic geology and geochemical evolution. J Volcanol Geotherm Res 104: 131–151.
  • Dreher ST, Eichelberger JC, Larsen JF (2005). The petrology and geochemistry of the Aniakchak caldera-forming ignimbrite, Aleutian arc, Alaska. J Petrol 46: 1747–1768.
  • Duffield WA, Heiken GH, Wohletz KH, Maassen LW, Dengo G, McKee EH, Castañeda O (1992). Geology and geothermal potential of the Tecuamburro volcano area, Guatemala. Geothermics 21: 425–446.
  • DuFrane SA, Asmerom Y, Mukasa SB, Morris JD, Dreyer BM (2006). Subduction and melting processes inferred from U–series, Sr– Nd–Pb isotope, and trace element data, Bicol and Bataan arcs, Philippines. Geochim Cosmochim Acta 70: 3401–3420.
  • Duncker KE, Wolff JA, Harmon RS, Leat PT, Dickin AP, Thompson RN (1991). Diverse mantle and crustal components in lavas of the NW Cerros del Rio volcanic field, Rio Grande Rift, New Mexico. Contrib Mineral Petrol 108: 331–345.
  • Dupuy C, Dostal J, Marcelot G, Bougault H, Joron JL, Treuil M (1982). Geochemistry of basalts from central and southern New Hebrides arc: implication for their source rock composition. Earth Planet Sci Lett 60: 207–225.
  • Edwards CMH, Menzies MA, Thirlwall MF, Morris JD, Leeman WP, Harmon RS (1994). The transition to potassic alkaline volcanism in island arcs: the Ringgit-Beser complex, east Java, Indonesia. J Petrol 35: 1557–1595.
  • Eggins SM (1993). Origin and differentiation of picritic arc magmas, Ambae (Aoba), Vanuatu. Contrib Mineral Petrol 114: 79–100.
  • Ego F, Ansan V (2002). Why is the Central Trans-Mexican Volcanic Belt (102°-99°W) in transtensive deformation? Tectonophysics 359: 189–208.
  • Egozcue JJ, Pawlowsky-Glahn V, Mateu-Figueras G, Barceló-Vidal C (2003). Isometric logratio transformations for compositional data analysis. Math Geol 35: 279–300.
  • Elliott T, Plank T, Zindler A, White WM, Bourdon B (1997). Element transport from slab to volcanic front at the Mariana arc. J Geophys Res 102: 14991–15019.
  • Faure G (1986). Principles of Isotope Geology. New York, NY, USA: Wiley.
  • Faure G (2001). Origin of Igneous Rocks. The Isotopic Evidence. Berlin, Germany: Springer.
  • Feigenson MD, Bolge LL, Carr MJ, Herzberg CT (2003). REE, inverse modeling of HSDP2 basalts: Evidence for multiple sources in the Hawaiian plume. Geochem Geophys Geosys 4: 1–25.
  • Feigenson MD, Carr MJ (1993). The source of Central American lavas: inferences from geochemical inverse modeling. Contrib Mineral Petrol 113: 226–235.
  • Feigenson MD, Carr MJ, Maharaj SV, Juliano S, Bolge LL (2004). Lead isotope composition of Central American volcanoes: influence of the Galapagos plume. Geochem Geophys Geosys 5: Q06001.
  • Feineman M, Moriguti T, Yokoyama T, Terui S, Nakamura E (2013). Sediment-enriched adakitic magmas from the Daisen volcanic field, southwest Japan. Geochem Geophys Geosyst 14: 3009– 3031.
  • Ferrari L (2004). Slab detachment control on mafic volcanic pulse and mantle heterogeneity in central Mexico. Geology 32: 77–80.
  • Ferrari L, Conticelli S, Vaggelli G, Petrone CM, Manetti P (2000). Late Miocene volcanism and intra-arc-tectonics during the early development of the Trans-Mexican Volcanic Belt. Tectonophysics 318: 161–185.
  • Ferrari L, Garduño VH, Innocenti F, Manetti P, Pasquare G, Vaggelli G (1994). A widespread mafic volcanic unit at the base of the Mexican Volcanic Belt between Guadalajara and Querétaro. Geofís Int 33: 107–123.
  • Ferrari L, Pasquare G, Tibaldi A (1990). Plio-Quaternary tectonics of the central Mexican Volcanic Belt and some constraints on its rifting mode. Geofís Int 29: 5–18.
  • Ferrari L, Petrone CM, Francalanci L (2001). Generation of oceanic- island basalt-type volcanism in the western Trans-Mexican volcanic belt by slab rollback, asthenosphere infiltration, and variable flux melting. Geology 29: 507–510.
  • Ferrari L, Petrone CM, Francalanci L (2002). Reply: “Generation of oceanic-island basalt type volcanism in the western Trans-Mexican volcanic belt by slab rollback, asthenosphere infiltration, and variable flux melting:. Geology 114: 858–859.
  • Ferrari L, Rosas-Elguera J (1999). Alkalic (ocean-island basalt type) and calc-alkaline volcanism in the Mexican volcanic belt: a case for plume-related magmatism and propagating rifting at an active margin?: comment and reply. Geology 27: 1055–1056.
  • Feuerbach DL, Smith EI, Walker JD, Tangeman JA (1993). The role of the mantle during crustal extension: constraints from geochemistry of volcanic rocks in the Lake Mead area, Nevada and Arizona. Geol Soc Am Bull 105: 1561–1575.
  • Finney B, Turner S, Hawkesworth C, Larsen J, Nye C, George R, Bindeman I, Eichelberger J (2008). Magmatic differentiation at an island-arc caldera: Okmok volcano, Aleutian Islands, Alaska. J Petrol 49: 857–884.
  • Fitton JG, James D, Leeman WP (1991). Basic magmatism associated with Late Cenozoic extension in the western United States: compositional variations in space and time. J Geophys Res 96: 13693–13711.
  • Frey FA, Gerlach DC, Hickey RL, Lopez-Escobar L, Munizaga- Villavicencio F (1984). Petrogenesis of the Laguna del Maule volcanic complex, Chile (36°S). Contrib Mineral Petrol 88: 133–149.
  • Frey HM, Lange RA, Hall CM, Delgado-Granados H, Carmichael ISE (2007). A Pliocene ignimbrite flare-up along the Tepic- Zacoalco rift: evidence for the initial stages of rifting between the Jalisco block (Mexico) and North America. Geol Soc Am Bull 119: 49–64.
  • Gamble JA, Smith IEM, McCulloch MT, Graham IJ, Kokelaar BP (1993). The geochemistry and petrogenesis of basalts from the Taupo volcanic zone and Kermadec Island arc, S.W. Pacific. J Volcanol Geotherm Res 54: 265–290.
  • Gamble JA, Wright IC, Woodhead JD, McCulloch MT (1995). Arc and back-arc geochemistry in the southern Kermadec arc- Ngatoro basin and offshore Taupo volcanic zone, SW Pacific. In: Smellie JL, editor. Volcanism Associated with Extension at Consuming Plate Margins. London, UK: Geological Society Special Publication, pp. 193–212.
  • García-Palomo A, Macías JL, Arce JL, Capra L, Garduño VH, Espíndola JM (2002a). Geology of Nevado de Toluca Volcano and Surrounding Areas, Central Mexico. Boulder, CO, USA: Geological Society of America Map and Chart Series MCH089.
  • García-Palomo A, Macías JL, Garduño VH (2000). Miocene to Recent structural evolution of the Nevado de Toluca volcano region, Central Mexico. Tectonophysics 318: 281–302.
  • García-Palomo A, Macías JL, Tolson G, Valdez G, Mora JC (2002b). Volcanic stratigraphy and geological evolution of the Apan region, east-central sector of the Trans-Mexican Volcanic Belt. Geofís Int 41: 133–150.
  • García Tovar GP (2009). Caracterización geologíca, geoquímica e isotópica de las lavas del estratovolcán Telepón, Sierra Nevada, México. MSc, Universidad Nacional Autónoma de México, Mexico City, Mexico (in Spanish).
  • Garduño-Monroy VH, Spinner J, Ceragioli E (1993). Geological and structural study of the Chapala rift, State of Jalisco, Mexico. Geofís Int 32: 487–499.
  • Gazel E, Carr MJ, Hoernle K, Feigenson MD, Szymanski D, Hauff F, van den Bogaard P (2009). Galapagos-OIB in southern Central America: mantle refertilization by arc-hot spot interaction. Geochem Geophys Geosys 10: Q02S11.
  • Gerlach DC, Frey FA, Moreno-Roa H, Lopez-Escobar L (1988). Recent volcanism in the Puyehue-Cordon Caulle region, southern Andes, Chile (40.5°S): petrogenesis of evolved lavas. J Petrol 29: 333–382.
  • Gertisser R, Keller J (2003). Trace element and Sr, Nd, Pb and O isotope variations in medium-K and high-K volcanic rocks from Merapi volcano, Central Java, Indonesia: evidence for the involvement of subducted sediments in Sunda Arc magma genesis. J Petrol 44: 457–489.
  • Gibson SA, Thompson RN, Leat PT, Dickin AP, Morrison MA, Hendry GL, Mitchell JG (1992). Asthenosphere-derived magmatism in the Rio Grande rift, western USA: implications for continental break-up. In: Storey BC, Alabaster T, Pankhurst RJ, editors. Magmatism and the Causes of Continental Break- Up. London, UK: Geological Society Special Publication, pp. 61–89.
  • Gómez-Tuena A, LaGatta AB, Langmuir CH, Goldstein SL, Ortega- Gutiérrez F, Carrasco-Nşñez G (2003). Temporal control of subduction magmatism in the eastern Trans-Mexican Volcanic Belt: mantle sources, slab contributions, and crustal contamination. Geochem Geophys Geosys 4: 8912.
  • Gómez-Tuena A, Langmuir CH, Goldstein SL, Straub SM, Ortega- Gutiérrez F (2007a). Geochemical evidence for slab melting in the Trans-Mexican Volcanic Belt. J Petrol 48: 537–562.
  • Gómez-Tuena A, Orozco-Esquivel MT, Ferrari L (2007b). Igneous petrogenesis of the Trans-Mexican volcanic belt. In: Geology of Mexico: Celebrating the Centenary of the Geological Society of Mexico. Boulder, CO, USA: Geological Society of America, pp. 129–181.
  • González Partida E, Torres Rodriguez V, Birkle P (1997). Plio- Pleistocene volcanic history of the Ahuachapan geothermal system, El Salvador: the Concepción de Ataco caldera. Geothermics 26: 555–575.
  • Grib EN, Leonov VL, Perepelov AB (2009). The Karymskii Volcanic Center: volcanic rock geochemistry. J Volcanol Seismol+ 3: 367–387.
  • Guilbaud MN, Siebe C, Agustín-Flores J (2009). Eruptive style of the young high-Mg basaltic-andesite Pelagatos scoria cone, southeast of México City. Bull Volcanol 71: 859–880.
  • Gunn BM, Mooser F (1971). Geochemistry of the volcanics of central Mexico. Bull Volcanol 34: 577–613.
  • Guzmán-Speziale M, Valdés-González C, Molina E, Gómez JM (2005). Seismic activity along the Central America volcanic arc: is it related to subduction of the Cocos plate? Tectonophysics 400: 241–254.
  • Haase KM, Worthington TJ, Stoffers P, Garbe-Schönberg D, Wright I (2002). Mantle dynamics, element recycling, and magma genesis beneath the Kermadec arc-Havre Trough. Geochem Geophys Geosys 3: 1071.
  • Halama R, Boudon G, Villemant B, Joron JL, Le Friant A, Komorowski JC (2006). Pre-eruptive crystallization conditions of mafic and silicic magmas at the Plat Pays volcanic complex, Dominica (Lesser Antilles). J Volcanol Geotherm Res 153: 200–220.
  • Han BF, Wang SG, Kagami H (1999). Trace element and Nd-Sr isotope constraints on origin of the Chifeng flood basalts, North China. Chem Geol 155: 187–199.
  • Handley HK, Macpherson CG, Davidson JP, Berlo K, Lowryñ D (2007). Constraining fluid and sediment contributions to subduction-related magmatism in Indonesia: Ijen volcanic complex. J Petrol 48: 1155–1183.
  • Harris NBW, Ronghua X, Lewis CL, Chengwei J (1988). Plutonic rocks of the 1985 Tibet Geotraverse, Lhasa to Golmud. Philos T R Soc A 327: 145–168.
  • Harry DL, Green NL (1999). Slab dehydration and basalt petrogenesis in subduction systems involving very young oceanic lithosphere. Chem Geol 160: 309–333.
  • Hart SR (1984). A large-scale isotope anomaly in the southern hemisphere mantle. Nature 309: 753–757.
  • Hasenaka T (1992). Chemical compositions of selected samples. In: Aoki K, editor. Subduction Volcanism and Tectonics of Western Mexican Volcanic Belt International Scientific Research Program (No 03041014) Japan-Mexico Co-operative Research. Sendai, Japan: Faculty of Science, Tohoku University, pp. 238–247.
  • Hazlett RW (1987). Geology of San Cristobal volcanic complex, Nicaragua. J Volcanol Geotherm Res 33: 223–230.
  • Hergt JM, Woodhead JD (2007). A critical evaluation of recent models for Lau–Tonga arc–backarc basin magmatic evolution. Chem Geol 245: 9–44.
  • Hernández Rojas J (2007). Reconstrucción de la dinámica eruptiva de la pómez Ezequiel Montes, Qro. MSc, Universidad Nacional Autónoma de México, Mexico City, Mexico (in Spanish).
  • Herrstrom EA, Reagan MK, Morris JD (1995). Variations in lava composition associated with flow of asthenosphere beneath southern Central America. Geology 23: 617–620.
  • Heydolph K, Hoernle K, Hauff F, van den Bogaard P, Portnyagin M, Bindeman I, Garbe-Schönberg D (2012). Along and across arc geochemical variations in NW Central America: Evidence for involvement of lithospheric pyroxenite. Geochim Cosmochim Acta 84: 459–491.
  • Hickey RL, Frey FA, Gerlach DC, Lopez-Escobar L (1986). Multiple sources for basaltic arc rocks from the southern volcanic zone of the Andes (34°-41°S): trace element and isotopic evidence for contributions from subducted oceanic crust, mantle, and continental crust. J Geophys Res 91: 5963–5983.
  • Hickey-Vargas R, Moreno Roa H, Lopez Escobar L, Frey FA (1989). Geochemical variations in Andean basaltic and silicic lavas from the Villarrica-Lanin volcanic chain (39.5°S): an evaluation of source heterogeneity, fractional crystallization and crustal assimilation. Contrib Mineral Petrol 103: 361–386.
  • Hidalgo S, Monzier M, Martin H, Chazot G, Eissen JP, Cotten J (2007). Adakitic magmas in the Ecuadorian volcanic front: petrogenesis of the Iliniza volcanic complex (Ecuador). J Volcanol Geotherm Res 159: 366–392.
  • Hoang N, Itoh JI, Miyagi I (2011). Subduction components in Pleistocene to Recent Kurile arc magmas in NE Hokkaido, Japan. J Volcanol Geotherm Res 200: 255–266.
  • Hoffer G, Eissen JP, Beate B, Bourdon E, Fornari M, Cotten J (2008). Geochemical and petrological constraints on rear-arc magma genesis processes in Ecuador: the Puyo cones and Mera lavas volcanic formations. J Volcanol Geotherm Res 176: 107–118.
  • Hofmann AW, Feigenson MD (1983). Case studies on the origin of basalt. I. Theory and reassessment of Grenada basalts. Contrib Mineral Petrol 84: 382–389.
  • Hofmann AW, Feigenson MD, Raczek I (1984). Case studies on the origin of basalt: III. Petrogenesis of the Mauna Ulu eruption, Kilauea, 1969-1971. Contrib Mineral Petrol 88: 24–35.
  • Hole MJ, Saunders AD, Marriner GF, Tarney J (1984). Subduction of pelagic sediments: implications for the origin of Ce-anomalous basalts from the Marianas Islands. J Geol Soc London 141:
  • Hoogewerff JA, van Bergen MJ, Vroon PZ, Hertogen J, Wordel R, Sneyers A, Nasution A, Varekamp JC, Moens HLE, Mouchel D (1997). U-series, Sr-Nd-Pb isotope and trace-element systematics across an active island arc-continent collision zone: implications for element transfer at the slab-wedge interface. Geochim Cosmochim Acta 61: 1057–1072.
  • Hou ZQ, Gao YF, Qu XM, Rui ZY, Mo XX (2004). Origin of adakitic intrusives generated during mid-Miocene east-west extension in southern Tibet. Earth Planet Sci Lett 220: 139–155.
  • Ilbeyli N, Pearce JA, Thirlwall MF, Mitchell JG (2004). Petrogenesis of collision–related plutonics in Central Anatolia, Turkey. Lithos 72: 163–182.
  • Izbekov PE, Eichelberger JC, Ivanov BV (2004). The 1996 eruption of Karymsky volcano, Kamchatka: historical record of basaltic replenishment of an andesite reservoir. J Petrol 45: 2325–2345.
  • Jensen JL, Lake LW, Corbett PWM, Goggin DJ (1997). Statistics for Petroleum Engineers and Geoscientists. Upper Saddle River, NJ, USA: Prentice Hall.
  • Jiménez Z, Ponce L (1978). Focal mechanism of six large earthquakes in northern Oaxaca, Mexico, for the period 1928-1973. Geofís Int 17: 379–386.
  • Jödicke H, Jording A, Ferrari L, Arzate J, Mezger K, Rüpke L (2006). Fluid release from subducted Cocos plate and partial melting of the crust deduced from magnetotelluric studies in southern Mexico: implications for the generation of volcanism and subduction dynamics. J Geophys Res 111: B08102.
  • Johnson CA, Harrison CGA (1989). Tectonics and volcanism in central Mexico: a Landsat thematic mapper perspective. Remote Sens Environ 28: 273–286.
  • Johnson CA, Harrison CGA (1990). Neotectonics in central Mexico. Phys Earth Planet Inter 64: 187–210.
  • Johnston ST, Thorkelson DJ (1997). Cocos-Nazca slab window beneath Central America. Earth Planet Sci Lett 146: 465–474.
  • Jording A, Ferrari L, Arzate J, Jödicke H (2000). Crustal variations and terrane boundaries in southern Mexico as imaged by magnetotelluric transfer functions. Tectonophysics 327: 1–13.
  • Karsli O, Chen B, Uysal I, Aydin F, Wijbrans JR, Kandemir R (2008). Elemental and Sr-Nd-Pb isotopic geochemistry of the most recent Quaternary volcanism in the Erzincan basin, Eastern Turkey: framework for the evaluation of basalt-lower crust interaction. Lithos 106: 55–70.
  • Karsli O, Ketenci M, Uysal I, Dokuz A, Aydin F, Chen B, Kandemir R, Wijbrans J (2011). Adakite-like granitoid porphyries in the Eastern Pontides, NE Turkey: potential parental melts and geodynamic implication. Lithos 127: 354–372.
  • Kaur P, Chaudhri N, Hofmann AW (2015). New evidence for two sharp replacement fronts during albitization of granitoids from northern Aravalli orogen, northwest India. Int Geol Rev 57: 1658–1683.
  • Kay SM, Kay RW (1994). Aleutian magmas in space and time. In: Plafker G, Berg HC, editors. Geology of North America. Boulder, CO, USA: Geological Society of America, pp. 687– 722.
  • Kay SM, Maksaev V, Moscoso R, Mpodozis C, Nasi C (1987). Probing the evolving Andean lithosphere: mid-late Tertiary magmatism in Chile (29°-30°30’S) over the modern zone of subhorizontal subduction. J Geophys Res 92: 6173–6189.
  • Kay SM, Mpodozis C, Ramos VA, Munizaga F (1991). Magma source variations for mid-late Tertiary magmatic rocks associated with a shallowing subduction zone and a thickening crust in the central Andes. GSA Special Papers 265: 113–137.
  • Kempton PD, Fitton JG, Hawkesworth CJ, Ormerod DS (1991). Isotopic and trace element constraints on the composition and evolution of the lithosphere beneath the southwestern United States. J Geophys Res 96: 13713–13735.
  • Kheirkhah M, Allen MB, Emami M (2009). Quaternary syn-collision magmatism from the Iran/Turkey borderlands. J Volcanol Geotherm Res 182: 1–12.
  • Kim WH, Clayton RW, Keppie F (2011). Evidence of a collision between the Yucatán block and Mexico in the Miocene. Geophys J Int 187: 989–1000.
  • Kimura JI, Kent AJR, Rowe MC, Katakuse M, Nakano F, Hacker BR, van Keken PE, Kawabata K, Stern RJ (2010). Origin of cross- chain geochemical variation in Quaternary lavas from the northern Izu arc: using a quantitative mass balance approach to identify mantle sources and mantle wedge processes. Geochem Geophys Geosys 11: 1–24.
  • Kimura JI, Yoshida T (2006). Contributions of slab fluid, mantle wedge and crust to the origin of Quaternary lavas in the NE Japan arc. J Petrol 47: 2185–2232.
  • Kolb M, Paulick H, Kirchenbaur M, Münker C (2012). Petrogenesis of mafic to felsic lavas from the Oligocene Siebengebirge volcanic field (Germany): implications for the origin of intracontinental volcanism in Central Europe. J Petrol 53: 2349–2379.
  • Koloskov AV, Khubunaya SA (2013). New petrological data on the volcanic rocks of the Chichinautzin region: the sources of the magmatic melts and the origin of the Trans-Mexican Volcanic Belt. Russ J Pac Geol 7: 247–261.
  • Koprubasi N, Aldanmaz E (2004). Geochemical constraints on the petrogenesis of Cenozoic I-type granitoids in Northwest Anatolia, Turkey: evidence for magma generation by lithospheric delamination in a post-collisional setting. Int Geol Rev 46: 705–729.
  • La Femina PC, Connor CB, Hill BE, Strauch W, Saballos A (2004). Magma-tectonic interactions in Nicaragua: the 1999 seismic swarm and eruption of Cerro Negro volcano. J Volcanol Geotherm Res 137: 187–199.
  • Lai YM, Song SR, Iizuka Y (2008). Magma mingling in the Tungho area, coastal range of eastern Taiwan. J Volcanol Geotherm Res 178: 608–623.
  • Larocque ACL, Stimac JA, Siebe C (1998). Metal-residence sites in lavas and tuffs from Volcán Popocatépetl, Mexico: implications for metal mobility in the environment. Environ Geol 33: 197–
  • Lassiter JC, Luhr JF (2001). Osmium abundance and isotope variations in mafic Mexican volcanic rocks: evidence for crustal contamination and constraints on the geochemical behavior of osmium during partial melting and fractional crystallization. Geochem Geophys Geosyst 2: 1027.
  • Leat PT, Thompson RN, Dickin AP, Morrison MA, Hendry GL (1989). Quaternary volcanism in northwestern Colorado: implications for the roles of asthenosphere and lithosphere in the genesis of continental basalts. J Volcanol Geotherm Res 37:
  • Le Bas MJ (2000). IUGS reclassification of the high-Mg and picritic volcanic rocks. J Petrol 41: 1467–1470.
  • Le Bas MJ, Le Maitre RW, Streckeisen A, Zanettin B (1986). A chemical classification of volcanic rocks based on the total alkali-silica diagram. J Petrol 27: 745–750.
  • Lebti PP, Thouret JC, Wörner G, Fornari M (2006). Neogene and Quaternary ignimbrites in the area of Arequipa, southern Peru: stratigraphical and petrological correlations. J Volcanol Geotherm Res 154: 251–275.
  • Le Maitre RW, Streckeisen A, Zanettin B, Le Bas MJ, Bonin B, Bateman P, Bellieni G, Dudek A, Schmid R, Sorensen H et al. (2002). Igneous Rocks. A Classification and Glossary of Terms: Recommendations of the International Union of Geological Sciences Subcommission of the Systematics of Igneous Rocks. Cambridge, UK: Cambridge University Press.
  • Lindsay JM, Trumbull RB, Siebel W (2005). Geochemistry and petrogenesis of late Pleistocene to Recent volcanism in southern Dominica, Lesser Antilles. J Volcanol Geotherm Res 148: 253–394.
  • Luhr JF (1997). Extensional tectonics and the diverse primitive volcanic rocks in the western Mexican Volcanic Belt. Can Min 35: 473–500.
  • Luhr JF, Allan JF, Carmichael ISE, Nelson SA, Hasenaka T (1989). Primitive calc-alkaline and alkaline rock types from the western Mexican Volcanic Belt. J Geophys Res 94: 4515–4530.
  • Luhr JF, Carmichael ISE (1985). Jorullo Volcano, Michoacán, México (1759-1774): The earliest stages of fractionation in calc-alkaline magmas. Contrib Mineral Petrol 90: 142–161.
  • Luhr JF, Haldar D (2006). Barren island volcano (NE Indian Ocean): island-arc high-alumina basalts produced by troctolite contamination. J Volcanol Geotherm Res 149: 177–212.
  • Luhr JF, Nelson SA, Allan JF, Carmichael ISE (1985). Active rifting in southwestern Mexico: Manifestations of an incipient eastward spreading-ridge jump. Geology 13: 54–57.
  • Maalİe S (1994). Estimation of the degree of partial melting using concentration ratios. Geochim Cosmochim Acta 58: 2519–
  • Manea VC, Manea M, Kostoglodov V, Sewell G (2005). Thermo- mechanical model of the mantle wedge in Central Mexican subduction zone and a blob tracing approach for the magma transport. Phys Earth Planet Inter 149: 165–186.
  • Márquez A, De Ignacio C (2002). Mineralogical and geochemical constraints for the origin and evolution of magmas in Sierra Chichinautzin, Central Mexican Volcanic Belt. Lithos 62: 35– 62.
  • Márquez A, Oyarzun R, de Ignacio C, Doblas M (2001). Southward migration of volcanic activity in the central Mexican Volcanic Belt: asymmetric extension within a two-layer crustal stretching model. J Volcanol Geotherm Res 112: 175–187.
  • Márquez A, Oyarzun R, Doblas M, Verma SP (1999a). Alkalic (ocean-island basalt type) and calc-alkalic volcanism in the Mexican Volcanic Belt: a case for plume-related magmatism and propagating rifting at an active margin? Geology 27: 51– 54.
  • Márquez A, Oyarzun R, Doblas M, Verma SP (1999b). Reply to Comment by L. Ferrari and J. Rosas Elguera on “Alkalic (ocean basalt type) and calc-alkalic volcanism in the Mexican volcanic belt: a case of plume-related magmatism and propagating rift at an active margin?” Comment and Reply. Geology 27: 1055–
  • Márquez A, Verma SP, Anguita F, Oyarzun R, Brandle JL (1999c). Tectonics and volcanism of Sierra Chichinautzin: extension at the front of the Central Trans-Mexican Volcanic Belt. J Volcanol Geotherm Res 93: 125–150.
  • Martin del Pozzo AL (1989). Geoquímica y paleomagnetismo de la Sierra Chichinautzin. PhD, Universidad Nacional Autónoma de México, Mexico City, Mexico (in Spanish).
  • Martínez-Serrano RG, Schaaf P, Solís-Pichardo G, Hernández- Bernal MS, Hernández-Treviño T, Morales-Contreras JJ, Macías JL (2004). Sr, Nd and Pb isotope and geochemical data from the Quaternary Nevado de Toluca volcano, a source of recent adakitic magmatism, and the Tenango volcanic field, Mexico. J Volcanol Geotherm Res 138: 77–110.
  • Martynov AY, Kimura JI, Martynov YA, Rybin AV (2010). Geochemistry of late Cenozoic lavas on Kunashir Island, Kurile Arc. Island Arc 19: 86–104.
  • Mattioli M, Renzulli A, Menna M, Holm PM (2006). Rapid ascent and contamination of magmas through the thick crust of the CVZ (Andes, Ollagüe region): Evidence from a nearly aphyric high-K andesite with skeletal olivines. J Volcanol Geotherm Res 158: 87–105.
  • McBirney AR (2007). Igneous Petrology. Boston, MA, USA: Jones and Bartlett Publishers.
  • McBirney AR, Taylor HP, Armstrong RL (1987). Paricutin re- examined: a classical example of crustal assimilation in calc- alkaline magma. Contrib Mineral Petrol 95: 4–20.
  • McDonough WF, Sun SS (1995). The composition of the Earth. Chem Geol 120: 223–253.
  • McKenzie D, O’Nions RK (1991). Partial melt distributions from inversion of rare earth element concentrations. J Petrol 32: 1021–1091.
  • McMillan NJ, Dickin AP, Haag D (2000). Evolution of magma source regions in the Rio Grande rift, southern New Mexico. Geol Soc Am Bull 112: 1582–1593.
  • Meriggi L, Macías JL, Tommasini S, Capra L, Conticelli S (2008). Heterogeneous magmas of the Quaternary Sierra Chichinautzin volcanic field (central Mexico): the role of an amphibole-bearing mantle and magmatic evolution processes. Rev Mex Cienc Geol 25: 197–216.
  • Middlemost EAK (1989). Iron oxidation ratios, norms and the classification of volcanic rocks. Chem Geol 77: 19–26.
  • Miller JN, Miller JC (2005). Statistics and chemometrics for analytical chemistry. Essex, UK: Pearson Prentice Hall.
  • Mo X, Hou Z, Niu Y, Dong G, Qu X, Zhao Z, Yang Z (2007). Mantle contributions to crustal thickening during continental collision: evidence from Cenozoic igneous rocks in southern Tibet. Lithos 96: 225–242.
  • Mo X, Niu Y, Dong G, Zhao Z, Hou Z, Zhou S, Ke S (2008). Contribution of syncollisional felsic magmatism to continental crust growth: a case study of the Paleogene Linzizong volcanic succession in southern Tibet. Chem Geol 250: 49–67.
  • Molnar P, Sykes LR (1969). Tectonics of the Caribbean and Middle America regions from focal mechanisms and seismicity. Geol Soc Am Bull 80: 1639–1684.
  • Monzier M, Danyushevsky LV, Crawford AJ, Bellon H, Cotten J (1993). High-Mg andesites from the southern termination of the New Hebrides island arc (SW Pacific). J Volcanol Geotherm Res 57: 193–217.
  • Monzier M, Robin C, Eissen JP, Cotten J (1997). Geochemistry vs. seismo-tectonics along the volcanic New Hebrides Central Chain (Southwest Pacific). J Volcanol Geotherm Res 78: 1–29.
  • Mooser F, Montiel A, Zuñiga A (1996). Nuevo mapa geológico de las cuencas de México, Toluca y Puebla. Estratigrafía, tectónica y aspectos geotérmicos, 1. Mexico City, Mexico: CFE (in Spanish).
  • Mora JC, Macías JL, García-Palomo A, Arce JL, Espíndola JM, Manetti P, Vaselli O, Sánchez JM (2004). Petrology and geochemistry of the Tacaná Volcanic complex, Mexico-Guatemala: evidence for the last 40 000 yr of activity. Geofís Int 43: 331–359.
  • Morán-Zenteno DJ, Cerca M, Keppie JD (2007). The Cenozoic tectonic and magmatic evolution of southwestern México: advances and problems of interpretation. In: Geology of Mexico: Celebrating the Centenary of the Geological Society of Mexico. Boulder, CO, USA: Geological Society of America, pp. 71–91.
  • Moriguti T, Shibata T, Nakamura E (2004). Lithium, boron and lead isotope and trace element systematics of Quaternary basaltic volcanic rocks in northeastern Japan: mineralogical controls on slab-derived fluid composition. Chem Geol 212: 81–100.
  • Mukasa SB, Blatter DL, Andronikov AV (2007). Mantle peridotite xenoliths in andesite lava at El Peñon, central Mexican Volcanic Belt: isotopic and trace element evidence for melting and metasomatism in the mantle wedge beneath an active arc. Earth Planet Sci Lett 260: 37–55.
  • Nakagawa M, Nairn IA, Kobayashi T (1998). The ~10 ka multiple vent pyroclastic eruption sequence at Tongariro Volcanic Centre, Taupo Volcanic Zone, New Zealand: Part 2. Petrological insights into magma storage and transport during regional extension. J Volcanol Geotherm Res 86: 45–65.
  • Negendank JFW (1972). Volcanics of the Valley of Mexico. Description of some Mexican volcanic rocks with special consideration of the opaques. Part I: petrography of the volcanics. Neues Jb Miner Abh 116: 308–320.
  • Negendank JFW, Emmermann R, Krawczyk R, Mooser F, Tobschall H, Werle D (1985). Geological and geochemical investigations on the eastern Trans Mexican Volcanic Belt. Geofís Int 24: 477–575.
  • Nelson SA, Gonzalez-Caver E, Kyser TK (1995). Constraints on the origin of alkaline and calc-alkaline magmas from the Tuxtla Volcanic Field, Veracruz, Mexico. Contrib Mineral Petrol 122: 191–211.
  • Nixon GT (1988a). Petrology of the younger andesites and dacites of Iztaccíhuatl volcano, Mexico: I. Disequilibrium phenocryst assemblages as indicators of magma chamber processes. J Petrol 29: 213–264.
  • Nixon GT (1988b). Petrology of the younger andesites and dacites of Iztaccíhuatl volcano, Mexico: II. Chemical stratigraphy, magma mixing, and the composition of basaltic magma influx. J Petrol 29: 265–303.
  • Nixon GT (1989). The geology of Iztaccíhuatl volcano and adjacent areas of the Sierra Nevada and Valley of Mexico. GSA Special Papers 219: 1–59.
  • Norini G, Groppelli G, Lagmay AMF, Capra L (2006). Recent left- oblique slip faulting in the central eastern Trans-Mexican volcanic belt: seismic hazard and geodynamic implications. Tectonics 25: TC4012.
  • Nye CJ, Reid MR (1986). Geochemistry of primary and least fractionated lavas from Okmok volcano, central Aleutians: implications for arc magma genesis. J Geophys Res 91: 10271–
  • Ohba T, Matsuoka K, Kimura Y, Ishikawa H, Fujimaki H (2009). Deep crystallization differentiation of arc tholeiite basalt magmas from Northern Honshu arc, Japan. J Petrol 50: 1025–1046.
  • Ormerod DS, Rogers NW, Hawkesworth CJ (1991). Melting in the lithospheric mantle: inverse modelling of alkali-olivine basalts from the Big Pine volcanic field, California. Contrib Mineral Petrol 108: 305–317.
  • Ortega-Gutiérrez F, Elías-Herrera M, Dávalos-Elizondo MG (2008). On the nature and role of the lower crust in the volcanic front of the Trans-Mexican Volcanic Belt and its fore-arc region, southern and central Mexico. Rev Mex Cienc Geol 25: 346–
  • Pacheco JF, Singh SK (1998). Source parameters of two moderate Mexican earthquakes estimated from a single-station, near- source recording, and from MT inversion of regional data: a comparison of the results. Geofís Int 37: 95–102.
  • Pacheco JF, Singh SK (2010). Seismicity and state of stress in Guerrero segment of the Mexican subduction zone. J Geophys Res 115: B01303.
  • Pandarinath K (2014a). Tectonomagmatic origin of Precambrian rocks of Mexico and Argentina inferred from multi- dimensional discriminant-function based discrimination diagrams. J South Am Earth Sci 56: 464–484.
  • Pandarinath K (2014b). Testing of the recently developed tectonomagmatic discrimination diagrams from hydrothermally altered igneous rocks of 7 geothermal fields. Turk J Earth Sci 23: 412–426.
  • Pandarinath K, Verma SK (2013). Application of four sets of tectonomagmatic discriminant function based diagrams to basic rocks from northwest Mexico. J Iber Geol 39: 181–195.
  • Pang KN, Chung SL, Zarrinkoub MH, Mohammadi SS, Yang HM, Chu CH, Lee HY, Lo CH (2012). Age, geochemical characteristics and petrogenesis of Late Cenozoic intraplate alkali basalts in the Lut–Sistan region, eastern Iran. Chem Geol 306–307: 40–53.
  • Parat F, Dungan MA, Lipman PW (2005). Contemporaneous trachyandesitic and calc-alkaline volcanism of the Huerto andesite, San Juan Volcanic Field, Colorado, USA. J Petrol 46: 859–891.
  • Pardo M, Suárez G (1993). Step subduction geometry of the Rivera plate beneath the Jalisco block in Western Mexico. J Geophys Res 20: 2391–2394.
  • Pardo M, Suárez G (1995). Shape of the subducted Rivera and Cocos plates in southern Mexico: Seismic and tectonic implications. J Geophys Res 100: 12357–12373.
  • Pardo N, Avellán DR, Macías JL, Scolamacchia T, Rodríguez D (2008). The ~1245 yr BP Asososca maar: new advances on recent volcanic stratigraphy of Managua (Nicaragua) and hazard implications. J Volcanol Geotherm Res 176: 493–512.
  • Patino LC, Carr MJ, Feigenson MD (1997). Cross-arc geochemical variations in volcanic fields in Honduras C.A.: progressive changes in source with distance from the volcanic front. Contrib Mineral Petrol 129: 341–351.
  • Patino LC, Carr MJ, Feigenson MD (2000). Local and regional variations in Central American arc lavas controlled by variations in subducted sediment input. Contrib Mineral Petrol 138: 265–283.
  • Peate DW, Pearce JA, Hawkesworth CJ, Colley H, Edwards CMH, Hirose K (1997). Geochemical variations in Vanuatu arc lavas: the role of subducted material and a variable mantle wedge composition. J Petrol 38: 1331–1358.
  • Pérez RJ, Pal S, Terrell DJ, Urrutia FJ, López MM (1979). Preliminary report on the analysis of some “in-house” geochemical reference samples from Mexico. Geofís Int 18: 197–209.
  • Pérez-Campos X, Kim Y, Husker A, Davis PM, Clayton RW, Iglesias A, Pacheco JF, Singh SK, Manea VC, Gurnis M (2008). Horizontal subduction and truncation of the Cocos plate beneath central Mexico. Geophys Res Lett 35: L18303.
  • Petterson MG, Haldane MI, Smith DJ, Billy D, Jordan NJ (2011). Geochemistry and petrogenesis of the Gallego Volcanic field, Solomon Islands, SW Pacific and geotectonic implications. Lithos 125: 915–927.
  • Pradal E, Robin C (1994). Long-lived magmatic phases at Los Azufres volcanic center, Mexico. J Volcanol Geotherm Res 63: 201–215.
  • Rahman MS, Mondal MEA (2015). Evolution of continental crust of the Aravalli craton, NW India, during the Neoarchaean– Palaeoproterozoic: evidence from geochemistry of granitoids. Int Geol Rev 57: 1510–1525.
  • Ramos VA, Folguera A (2009). Andean flat-slab subduction through time. In: Murphy JB, Keppie JD, Hynes AJ, editors. Ancient Orogens and Modern Analogues. London, UK: Geological Society of London Special Publications, pp. 31–54.
  • Raos AM, Crawford AJ (2004). Basalts from the Efate Island group, central section of the Vanuatu arc, SW Pacific: geochemistry and petrogenesis. J Volcanol Geotherm Res 134: 35–64.
  • Robin C (1984). Le Volcan Popocatépetl (Mexique): structure, evolution pétrologique et risques. Bull Volcanol 47: 1–23 (in French).
  • Robin C, Eissen JP, Samaniego P, Martin H, Hall M, Cotten J (2009). Evolution of the late Pleistocene Mojanda-Fuya Fuya volcanic complex (Ecuador), by progressive adakitic involvement in mantle magma sources. Bull Volcanol 71: 233–258.
  • Rodríguez C, Sellés D, Dungan M, Langmuir C, Leeman W (2007). Adakitic dacites formed by intracrustal crystal fractionation of water-rich parent magmas at Nevado de Longaví volcano (36.2°S; Andean southern volcanic zone, central Chile). J Petrol 18: 2033–2061.
  • Rogers NW, Setterfield TN (1994). Potassium and incompatible- element enrichment in shoshonitic lavas from the Tavua volcano, Fiji. Chem Geol 118: 43–62.
  • Rollinson HR (1993). Using Geochemical Data: Evaluation, Presentation, Interpretation. Essex, UK: Longman Scientific Technical.
  • Romick JD, Perfit MR, Swanson SE, Shuster RD (1990). Magmatism in the eastern Aleutian arc: temporal characteristic of igneous activity on Akutan Island. Contrib Mineral Petrol 104: 700–
  • Rotolo SG, Castorina F (1998). Transition from mildly-tholeiitic to calc-alkaline suite: the case of Chicontepec volcanic centre, El Salvador, Central America. J Volcanol Geotherm Res 86: 117–136.
  • Rueda H, Macías JL, Arce JL, Gardner JE, Layer PW (2013). The ~ 31 ka rhyolitic Plinian to sub-Plinian eruption of Tlaloc Volcano, Sierra Nevada, central Mexico. J Volcanol Geotherm Res 252: 73–91.
  • Russo RM, Silver PG (1994). Trench parallel flow beneath the Nazca plate from seismic anisotropy. Science 263: 1105–1111.
  • Ryder CH, Gill JB, Tepley F 3rd, Ramos F, Reagan M (2006). Closed- to open-system differentiation at Arenal volcano (1968-2003). J Volcanol Geotherm Res 157: 75–93.
  • Sakuyama M, Nesbitt RW (1986). Geochemistry of the Quaternary volcanic rocks of the Northeast Japan arc. J Volcanol Geotherm Res 29: 413–450.
  • Samaniego P, Le Pennec JL, Robin C, Hidalgo S (2011). Petrological analysis of the pre-eruptive magmatic process prior to the 2006 explosive eruptions at Tungurahua volcano (Ecuador). J Volcanol Geotherm Res 199: 69–84.
  • Samaniego P, Martin H, Monzier M, Robin C, Fornari M, Eissen JP, Cotten J (2005). Temporal evolution of magmatism in the northern volcanic zone of the Andes: the geology and petrology of Cayambe volcanic complex (Ecuador). J Petrol 46: 2225–2252.
  • Schaaf P, Stimac J, Siebe C, Macías JL (2005). Geochemical evidence for mantle origin and crustal processes in volcanic rocks from Popocatépetl and surrounding monogenetic volcanoes, central Mexico. J Petrol 46: 1243–1282.
  • Schuth S, Rohrbach A, Münker C, Ballhaus C, Garbe-Schönberg D, Qopoto C (2004). Geochemical constraints on the petrogenesis of arc picrites and basalts, New Georgia group, Solomon Islands. Contrib Mineral Petrol 148: 288–304.
  • Sendjaja YA, Kimura JI, Sunardi E (2009). Across-arc geochemical variation of Quaternary lavas in west Java, Indonesia: mass- balance elucidation using arc basalt simulator model. Island Arc 18: 201–224.
  • Sheth HC (2008). Do major oxide tectonic discrimination diagrams work? Evaluating new log-ratio and discriminant-analysis- based diagrams with Indian Ocean mafic volcanics and Asian ophiolites. Terra Nova 20: 229–236.
  • Sheth HC, Torres-Alvarado IS, Verma SP (2000). Beyond subduction and plumes: a unified tectonic-petrogenetic model for the Mexican Volcanic Belt. Int Geol Rev 42: 1116–1132.
  • Sheth HC, Torres-Alvarado IS, Verma SP (2002). What is the “calc- alkaline rock series”? Int Geol Rev 44: 686–701.
  • Shinjo R, Woodhead JD, Hergt JM (2000). Geochemical variation within the northern Ryukyu: magma source compositions and geodynamic implications. Contrib Mineral Petrol 140: 263–282.
  • Shukuno H, Tamura Y, Tani K, Chang Q, Suzuki T, Fiske RS (2006). Origin of silicic magmas and the compositional gap at Sumisu submarine caldera, Izu-Bonin arc, Japan. J Volcanol Geotherm Res 156: 187–216.
  • Siebe C, Rodríguez-Lara V, Schaaf P, Abrams M (2004). Geochemistry, Sr-Nd isotope composition, and tectonic setting of Holocene Pelado, Guespalapa and Chichinautzin scoria cones, south of Mexico City. J Volcanol Geotherm Res 130: 197–226.
  • Siebe C, Schaaf P, Urrutia-Fucugauchi J (1999). Mammoth bones embedded in a late Plesitocene lahar from Popocatépetl volcano, near Tocuila, central México. Geol Soc Am Bull 111: 1550–1562.
  • Siebert L, Carrasco-Nşñez G (2002). Late-Pleistocene to precolumbian behind-the-arc mafic volcanism in the eastern Mexican Volcanic Belt; implications for future hazards. J Volcanol Geotherm Res 115: 179–205.
  • Silva Mora L (1988). Algunos aspectos de los basaltos y andesitas cuaternarias de Michoacán Oriental. Rev Inst Geol UNAM 7: 89–96 (in Spanish).
  • Singer BS, Smith KE, Jicha BR, Beard BL, Johnson CM, Rogers NW (2011). Tracking open-system differentiation during growth of Santa María volcano, Guatemala. J Petrol 52: 2335–2363.
  • Singh SK, Ordaz M, Pacheco JF, Alcántara L, Iglesias A, Alcocer S, García D, Pérez-Campos X, Valdes C, Almora D (2007). A report on the Atoyac, Mexico, earthquake of 13 April 2007 (M 5.9). Seismol Res Lett 78: 635–648.
  • Singh SK, Pardo M (1993). Geometry of the Benioff zone and state of stress in the overriding plate in central Mexico. Geophys Res Lett 20: 1483–1486.
  • Singh SK, Ponce L, Nishenko SP (1985). The great Jalisco, Mexico earthquakes of 1932: subduction of the Rivera plate. Bull Seismol Soc Am 75: 1301–1313.
  • Smith EI, Sánchez A, Walker JD, Wang K (1999). Geochemistry of mafic magmas in the Hurricane Volcanic Field, Utah: implications of small- and large-scale chemical variability of the lithospheric mantle. J Geol 107: 433–448.
  • Smith IEM, Stewart RB, Price RC (2003). The petrology of a large intra-oceanic silicic eruption: the Sandy Bay tephra, Kermadec arc, southwest Pacific. J Volcanol Geotherm Res 124: 173–194.
  • Smith IEM, Worthington TJ, Price RC, Stewart RB, Maas R (2006). Petrogenesis of dacite in an oceanic subduction environment: Raoul Island, Kermadec arc. J Volcanol Geotherm Res 156: 252–265.
  • Smith TE, Thirlwall M, Holm PE, Harris MJ (2004). Petrogenesis of orthopyroxene- and amphibole-bearing andesites, Mustique, Grenadine Islands, Lesser Antilles arc: isotope, trace element and physical constraints. Island Arc 13: 73–94.
  • Srivastava RK, Samal AK, Gautam GC (2015). Geochemical characteristics and petrogenesis of four Palaeoproterozoic mafic dike swarms and associated large igneous provinces from the eastern Dharwar craton, India. Int Geol Rev 57: 1460–1482.
  • Stolz AJ, Varne R, Davies GR, Wheller GE, Fodon JD (1990). Magma source components in an arc-continent collision zone: the Flores-Lembata sector, Sunda arc, Indonesia. Contrib Mineral Petrol 105: 585–601.
  • Straub SM, LaGatta AB, Martin-Del Pozzo AL, Langmuir CH (2008). Evidence from high-Ni olivines for a hybridized peridotite/ pyroxenite source for orogenic andesites from the central Mexican Volcanic Belt. Geochem Geophys Geosys 9: Q03007.
  • Straub SM, Martin-Del Pozzo AL (2001). The significance of phenocryst diversity in tephra from recent eruptions at Popocatépetl volcano (central Mexico). Contrib Mineral Petrol 140: 487–510.
  • Suarez G, Singh SK (1986). Tectonic interpretation of the Trans- Mexican Volcanic Belt—discussion. Tectonophysics 127: 155–
  • Sun SS, McDonough WF (1989). Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. In: Saunders AD, Norry MJ, editors. Magmatism in the Ocean Basins. London, UK: Geological Society Special Publication, pp. 313–345.
  • Sussman D (1985). Apoyo caldera, Nicaragua: a major Quaternary silicic eruptive center. J Volcanol Geotherm Res 24: 249–282.
  • Suter M, Carrillo Martínez M, López Martínez M, Farrar E (1995a). The Aljibes half-graben - active extension at the boundary between the Trans-Mexican Volcanic Belt and the basin and range province, Mexico. Geol Soc Am Bull 107: 627–641.
  • Suter M, López Martínez M, Quintero Legorreta O, Carrillo Martínez M (2001). Quaternary intra-arc extension in the central Trans- Mexican Volcanic Belt. Geol Soc Am Bull 113: 693–703.
  • Suter M, Quintero O, Johnson CA (1992). Active faults and state of stress in the central part of the Trans-Mexican Volcanic Belt, Mexico. 1. The Venta de Bravo fault. J Geophys Res 97: 11983–
  • Suter M, Quintero-Legorreta O, López-Martínez M, Aguirre-Díaz G, Farrar E (1995b). The Acambay graben: active intraarc extension in the Trans-Mexican Volcanic Belt, Mexico. Tectonics 14: 1245–1262.
  • Swinamer RT (1989). The geomorphology, petrography, geochemistry and petrogenesis of the volcanic rocks in the Sierra del Chichinautzin, Mexico. MSc, Queen’s University, Kingston, ON, Canada.
  • Takanashi K, Shuto K, Sato M (2011). Origin of Late Paleogene to Neogene basalts and associated coeval felsic volcanic rocks in southwest Hokkaido, northern NE Japan arc: constraints from Sr and Nd isotopes and major- and trace-element chemistry. Lithos 125: 368–392.
  • Tamura Y, Tani K, Ishizuka O, Chang Q, Shukuno H, Fiske RS (2005). Are arc basalts dry, wet, or both? Evidence from the Sumisu caldera volcano, Izu–Bonin arc, Japan. J Petrol 46: 1769–1803.
  • Tamura Y, Yuhara M, Ishii T, Irino N, Shukuno H (2003). Andesites and dacites from Daisen volcano, Japan: partial-to-total remelting of an andesite magma body. J Petrol 44: 2243–2260.
  • Tatsumi Y, Murasaki M, Arsadi EM, Nohda S (1991). Geochemistry of Quaternary lavas from NE Sulawesi: transfer of subduction components into the mantle wedge. Contrib Mineral Petrol 107: 137–149.
  • Tatsumi Y, Murasaki M, Nohda S (1992). Across-arc variation of lava chemistry in the Izu-Bonin arc: identification of subduction components. J Volcanol Geotherm Res 49: 179–190.
  • Tatsumi Y, Takahashi T, Hirahara Y, Chang Q, Miyazaki T, Kimura JI, Ban M, Sakayori A (2008). New insights into andesite genesis: the role of mantle-derived calc-alkalic and crust-derived tholeiitic melts in magma differentiation beneath Zao volcano, NE Japan. J Petrol 49: 1971–2008.
  • Temizel I, Arslan M, Ruffet G, Peucat JJ (2012). Petrochemistry, geochronology and Sr-Nd isotopic systematics of the Tertiary collisional and post-collisional volcanic rocks from the Ulubey (Ordu) area, eastern Pontide, NE Turkey: implications for extension-related origin and mantle source characteristics. Lithos 128: 126–147.
  • Tera F, Brown L, Morris J, Sacks IS, Klein J, Middleton R (1986). Sediment incorporation in island-arc magmas: inferences from 10Be. Geochim Cosmochim Acta 50: 535–550.
  • Thirlwall MF, Graham AM (1984). Evolution of high-Ca, high-Sr C-series basalts from Grenada, Lesser Antilles: the effects of intra-crustal contamination. J Geol Soc London 141: 427–445.
  • Thirlwall MF, Graham AM, Arculus RJ, Harmon RS, Macpherson CG (1996). Resolution of the effects of crustal assimilation, sediment subduction, and fluid transport in island arc magmas: Pb-Sr-Nd-O isotope geochemistry of Grenada, Lesser Antilles. Geochim Cosmochim Acta 60: 4785–4810.
  • Timm C, Hoernle K, Bogaard PVD, Bindeman I, Weaver S (2009). Geochemical evolution of intraplate volcanism at Banks Peninsula, New Zealand: interaction between asthenospheric and lithospheric melts. J Petrol 50: 989–1023.
  • Tormey DR, Hickey-Vargas R, Frey FA, López-Escobar L (1991). Recent lavas from the Andean volcanic front (33 to 42°S); interpretations of along-arc compositional variations. In: Harmon RS , Rapela CW, editors. Andean Magmatism and Its Tectonic Setting. Boulder, CO, USA: Geological Society of America Special Paper, pp. 57–77.
  • Torres-Alvarado IS, Smith AD, Castillo-Roman J (2011). Sr, Nd and Pb isotopic and geochemical constraints for the origin of magmas in Popocatépetl volcano (central Mexico) and their relationship with the adjacent volcanic fields. Int Geol Rev 53: 84–115.
  • Torres-Alvarado IS, Verma SP (2003). Discussion and reply: Neogene volcanism at the front of the central Mexican Volcanic Belt: basaltic andesites to dacites, with contemporaneous shoshonites and high-TiOlava. Geol Soc Am Bull 115: 1020– 1024.
  • Torres-Alvarado IS, Verma SP, Palacios-Berruete H, Guevara M, González-Castillo OY (2003). DC_Base: a database system to manage Nernst distribution coefficients and its application to partial melting modeling. Comput Geosci 29: 1191–1198.
  • Torres-Alvarado IS, Verma SP, Velasco-Tapia F (2002). Comment: “Generation of oceanic-island basalt type volcanism in the western Trans-Mexican volcanic belt by slab rollback, asthenosphere infiltration, and variable flux melting”. Geology 30: 857–858.
  • Trumbull RB, Wittenbrink R, Hahne K, Emmermann R, Büsch W, Gerstenberger H, Siebel W (1999). Evidence for Late Miocene to Recent contamination of arc andesites by crustal melts in the Chilean Andes (25-26°S) and its geodynamic implications. J South Am Earth Sci 12: 135–155.
  • Turner S, Foden J (2001). U, Th and Ra disequilibria, Sr, Nd and Pb isotope and trace element variations in Sunda arc lavas: predominance of a subducted sediment component. Contrib Mineral Petrol 142: 43–57.
  • Turner S, Hawkesworth C, Liu J, Rogers N, Kelley S, Calsteren PV (1993). Timing of Tibetan uplift constrained by analysis of volcanic rocks. Nature 364: 50–54.
  • Turner S, Hawkesworth CJ, Calsteren PV, Heath E, Macdonald R, Black S (1996). U-series isotopes and destructive plate margin magma genesis in the Lesser Antilles. Earth Planet Sci Lett 142:
  • UNAM and CENAPRED Seismology Group (1995). The Milpa Alta earthquake of January 21, 1995. Geofís Int 34: 355–362.
  • van Bergen MJ, Vroon PZ, Varekamp JC, Poorter RPE (1992). The origin of the potassic rock suite from Batu Tara volcano (East Sunda arc, Indonesia). Lithos 28: 261–282.
  • Varol E, Alpaslan M (2012). Quaternary basaltic volcanism reflecting heterogeneous mixture of two mafic melts: Gölova basaltic rocks, Southern Anatolia, Turkey. Geochem Int 50: 63–73.
  • Velasco-Tapia F (2014). Multivariate analysis, mass balance techniques, and statistical tests as tools in igneous petrology: application to the Sierra de las Cruces Volcanic Range (Mexican Volcanic Belt). The Scientific World Journal 2014: 793236.
  • Velasco-Tapia F, Rodríguez-Saavedra P, Márquez A, Navarro de León I, De Ignacio C, Marroquín Guerra SG, Quintanilla-Garza J, Rangel-Álvarez OM (2013). Mineralogical and geochemical evidence of magma mingling/mixing in the Sierra de Las Cruces volcanic range, Mexican Volcanic Belt. J Iber Geol 39:
  • Velasco-Tapia F, Verma SP (2001a). Estado actual de la investigación geoquímica en el campo monogenético de la Sierra de Chichinautzin: análisis de información y perspectivas. Rev Mex Cienc Geol 18: 1–36 (in Spanish).
  • Velasco-Tapia F, Verma SP (2001b). First partial melting inversion model for a rift-related origin of the Sierra de Chichinautzin volcanic field, central Mexican Volcanic Belt. Int Geol Rev 43: 788–817.
  • Velasco-Tapia F, Verma SP (2013). Magmatic processes at the volcanic front of Central Mexican Volcanic Belt: Sierra de Chichinautzin volcanic field (Mexico). Turk J Earth Sci 22: 32–60.
  • Vergara M, López-Escobar L, Cancino A, Levi B (1991). The Pichidangui formation; Some geochemical characteristics and tectonic implications of the Triassic marine volcanism in central Chile (31°55’ to 32°20’S). GSA Special Papers 265: 93–98.
  • Vergara M, López-Escobar L, Palma JL, Hickey-Vargas R, Roeschmann C (2004). Late Tertiary volcanic episodes in the area of the city of Santiago de Chile: new geochronological and geochemical data. J South Am Earth Sci 17: 227–238.
  • Verma SK, Oliveira EP (2013). Application of multi-dimensional discrimination diagrams and probability calculations to Paleoproterozoic acid rocks from Brazilian cratons and provinces to infer tectonic settings. J South Am Earth Sci 45: 117–146.
  • Verma SK, Oliveira EP (2015). Tectonic setting of basic igneous and metaigneous rocks of Borborema Province, Brazil using multi- dimensional geochemical discrimination diagrams. J South Am Earth Sci 58: 309–317.
  • Verma SK, Oliveira EP, Verma SP (2015). Plate tectonic settings for Precambrian basic rocks from Brazil by multi-dimensional tectonomagmatic discrimination diagrams and their limitations. Int Geol Rev 57: 1564–1579.
  • Verma SK, Pandarinath K, Verma SP (2012). Statistical evaluation of tectonomagmatic discrimination diagrams for granitic rocks and proposal of new discriminant-function-based multi- dimensional diagrams for acid rocks. Int Geol Rev 54: 325–347.
  • Verma SK, Verma SP (2013). Identification of Archaean plate tectonic processes from multidimensional discrimination diagrams and probability calculations. Int Geol Rev 55: 225–248.
  • Verma SP (1983). Magma genesis and chamber processes at Los Humeros caldera, Mexico - Nd and Sr isotope data. Nature 301: 52–55.
  • Verma SP (1987). Mexican Volcanic Belt: present state of knowledge and unsolved problems. Geofís Int 26: 309–340.
  • Verma SP (1991a). Determination of thirteen rare-earth elements by high-performance liquid chromatography in thirty and of K, Rb, Cs, Sr and Ba by isotope dilution mass spectrometry in eighteen international geochemical reference samples. Geostand Newslett 15: 129–134.
  • Verma SP (1991b). Usefulness of liquid chromatography for determination of thirteen rare-earth elements in rocks and minerals. Lanth Actin Res 3: 237–257.
  • Verma SP (1992). Seawater alteration effects on REE, K, Rb, Cs, Sr, U, Th, Pb, and Sr- Nd-Pb isotope systematics of mid-ocean ridge basalt. Geochem J 26: 159–177.
  • Verma SP (1999). Geochemistry of evolved magmas and their relationship to subduction-unrelated mafic volcanism at the volcanic front of the central Mexican Volcanic Belt. J Volcanol Geotherm Res 93: 151–171.
  • Verma SP (2000a). Geochemistry of the subducting Cocos plate and the origin of subduction-unrelated mafic volcanism at the volcanic front of the central Mexican Volcanic Belt. In: Delgado-Granados H, Aguirre-Díaz G, Stock JM, Editors, Cenozoic Tectonics and Volcanism of Mexico. Boulder, CO, USA: Geological Society of America, pp. 195–222.
  • Verma SP (2000b). Geochemical evidence for a lithospheric source for magmas from Los Humeros caldera, Puebla, Mexico. Chem Geol 164: 35–60.
  • Verma SP (2001a). Geochemical evidence for a lithospheric source for magmas from Acoculco caldera, Eastern Mexican Volcanic Belt. Int Geol Rev 43: 31–51.
  • Verma SP (2001b). Geochemical and Sr-Nd-Pb isotopic evidence for a combined assimilation and fractional crystallisation process for volcanic rocks from the Huichapan caldera, Hidalgo, Mexico. Lithos 56: 141–164.
  • Verma SP (2001c). Geochemical evidence for a rift-related origin of bimodal volcanism at Meseta Río San Juan, North-Central Mexican volcanic belt. Int Geol Rev 43: 475–493.
  • Verma SP (2002). Absence of Cocos plate subduction-related basic volcanism in southern Mexico: a unique case on Earth? Geology 30: 1095–1098.
  • Verma SP (2003). Geochemical and Sr-Nd isotopic evidence for a rift-related origin of magmas in Tizayuca volcanic field, Central Mexican Volcanic Belt. J Geol Soc India 61: 257–276.
  • Verma SP (2004). Solely extension-related origin of the eastern to west-central Mexican Volcanic Belt (Mexico) from partial melting inversion model. Current Science 86: 713–719.
  • Verma SP (2005). Estadística Básica para el Manejo de Datos Experimentales: Aplicación en la Geoquímica (Geoquimiometría). Mexico City, Mexico: Universidad Nacional Autónoma de México (in Spanish).
  • Verma SP (2006). Extension-related origin of magmas from a garnet- bearing source in the Los Tuxtlas volcanic field, Mexico. Int J Earth Sci 95: 871–901.
  • Verma SP (2009). Continental rift setting for the central part of the Mexican Volcanic Belt: a statistical approach. Open Geology Journal 3: 8–29.
  • Verma SP (2010). Statistical evaluation of bivariate, ternary and discriminant function tectonomagmatic discrimination diagrams. Turk J Earth Sci 19: 185–238.
  • Verma SP (2012a). Geochemometrics. Rev Mex Cienc Geol 29: 276–
  • Verma SP (2012b). Application of multi-dimensional discrimination diagrams and probability calculations to acid rocks from Portugal and Spain. Comunicações Geológicas 99: 79–93.
  • Verma SP (2013). Application of 50 multi-dimensional discrimination diagrams and significance tests to decipher compositional similarities and differences between Hawaiian and Icelandic volcanism. Int Geol Rev 55: 1553–1572.
  • Verma SP (2015a). Origin, evolution, and tectonic setting of the eastern part of the Mexican Volcanic Belt and comparison with the Central American Volcanic Arc from conventional multielement normalised and new multidimensional discrimination diagrams and discordancy and significance tests. Turk J Earth Sci 24: 111–164.
  • Verma SP (2015b). Monte Carlo comparison of conventional ternary diagrams with new log-ratio bivariate diagrams and an example of tectonic discrimination. Geochem J 49: 393–412.
  • Verma SP, Agrawal S (2011). New tectonic discrimination diagrams for basic and ultrabasic volcanic rocks through log-transformed ratios of high field strength elements and implications for petrogenetic processes. Rev Mex Cienc Geol 28: 24–44.
  • Verma SP, Aguilar-Y-Vargas VH (1988). Bulk chemical composition of magmas in the Mexican Volcanic Belt (Mexico) and inapplicability of generalized arc-models. Chem Erde 48: 203–
  • Verma SP, Armstrong-Altrin JS (2013). New multi-dimensional diagrams for tectonic discrimination of siliciclastic sediments and their application to Precambrian basins. Chem Geol 355:
  • Verma SP, Besch T, Guevara M, Schulz-Dobrich B (1992). Determination of twelve trace elements in twenty-seven and ten major elements in twenty-three geochemical reference samples by X-Ray fluorescence spectrometry. Geostand Newslett 16: 301–309.
  • Verma SP, Carrasco-Nşñez G (2003). Reappraisal of the geology and geochemistry of Volcán Zamorano, central Mexico: implications for discriminating the Sierra Madre Occidental and Mexican Volcanic Belt provinces. Int Geol Rev 45: 724–
  • Verma SP, Carrasco-Nşñez G, Milán M (1991). Geology and geochemistry of Amealco caldera, Qro., Mexico. J Volcanol Geotherm Res 47: 105–127.
  • Verma SP, Cruz-Huicochea R (2013). Alternative approach for precise and accurate Student´s t critical values and application in geosciences. J Iber Geol 39: 31–56.
  • Verma SP, Cruz-Huicochea R, Díaz-González L (2013a). Univariate data analysis system: deciphering mean compositions of island and continental arc magmas, and influence of underlying crust. Int Geol Rev 55: 1922–1940.
  • Verma SP, Cruz-Huicochea R, Díaz-González L, Vema SK (2015a). A new computer program TecDIA for multidimensional tectonic discrimination of intermediate and acid magmas and its application to the Bohemian Massif, Czech Republic. J Geosci (in press).
  • Verma SP, Díaz-González L (2012). Application of the discordant outlier detection and separation system in the geosciences. Int Geol Rev 54: 593–614.
  • Verma SP, Guevara M, Agrawal S (2006). Discriminating four tectonic settings: five new geochemical diagrams for basic and ultrabasic volcanic rocks based on log-ratio transformation of major-element data. J Earth Syst Sci 115: 485–528.
  • Verma SP, Guevara M, Besch T, Schulz-Dobrich B (1993b). Elementos traza y mayores en muestras internacionales de referencia geoquímica por espectrometría de rayos-X. Geofís Int 32: 311–319.
  • Verma SP, Hasenaka T (2004). Sr, Nd, and Pb isotopic and trace element geochemical contraints for a veined-mantle source of magmas in the Michoacán-Guanajuato volcanic field, west- central Mexican Volcanic Belt. Geochem J 38: 43–65.
  • Verma SP, Luhr JF (2010). Sr, Nd, and Pb isotopic evidence for the origin and evolution of the Cántaro-Colima Volcanic Chain, Western Mexican Volcanic Belt. J Volcanol Geotherm Res 197: 33–51.
  • Verma SP, Nelson SA (1989). Isotopic and trace element constraints on the origin and evolution of alkaline and calc-alkaline magmas in the northwestern Mexican Volcanic Belt. J Geophys Res 94: 4531–4544.
  • Verma SP, Pandarinath K, Verma SK, Agrawal S (2013b). Fifteen new discriminant-function-based multi-dimensional robust diagrams for acid rocks and their application to Precambrian rocks. Lithos 168-169: 113–123.
  • Verma SP, Quiroz-Ruiz A (2008). Critical values for 33 discordancy test variants for outliers in normal samples of very large sizes from 1,000 to 30,000 and evaluation of different regression models for the interpolation of critical values. Rev Mex Cienc Geol 25: 369–381.
  • Verma SP, Quiroz-Ruiz A (2011). Corrigendum to Critical values for 22 discordancy test variants for outliers in normal samples up to sizes 100, and applications in science and engineering [Rev. Mex. Cienc. Geol., 23 (2006), 302-319]. Rev Mex Cienc Geol 28: 202.
  • Verma SP, Quiroz-Ruiz A, Díaz-González L (2008). Critical values for 33 discordancy test variants for outliers in normal samples up to sizes 1000, and applications in quality control in Earth Sciences. Rev Mex Cienc Geol 25: 82–96.
  • Verma SP, Rivera-Gómez MA (2013a). New computer program TecD for tectonomagmatic discrimination from discriminant function diagrams for basic and ultrabasic magmas and its application to ancient rocks. J Iber Geol 39: 167–179.
  • Verma SP, Rivera-Gómez MA (2013b). Computer programs for the classification and nomenclature of igneous rocks. Episodes 36: 115–124.
  • Verma SP, Salazar-V A, Negendank JFW, Milán M, Navarro-L I, Besch T (1993a). Características petrográficas y geoquímicas de elementos mayores del campo volcánico de Los Tuxtlas, Veracruz, México. Geofís Int 32: 237–248 (in Spanish).
  • Verma SP, Torres-Alvarado IS, Satir M, Dobson PF (2005). Hydrothermal alteration effects in geochemistry and Sr, Nd, Pb, and O isotopes of magmas from the Los Azufres geothermal field (Mexico): a statistical approach. Geochem J 39: 141–163.
  • Verma SP, Torres-Alvarado IS, Sotelo-Rodríguez ZT (2002). SINCLAS: Standard igneous norm and volcanic rock classification system. Comput Geosci 28: 711–715.
  • Verma SP, Torres-Alvarado IS, Velasco-Tapia F (2003). A revised CIPW norm. Schweiz Miner Petrog Mitteil 83: 197–216.
  • Verma SP, Verma SK (2013). First 15 probability-based multi- dimensional discrimination diagrams for intermediate magmas and their robustness against post-emplacement compositional changes and petrogenetic processes. Turk J Earth Sci 22: 931–995.
  • Verma SP, Verma SK, Oliveira EP (2015b). Application of 55 multi- dimensional tectonomagmatic discrimination diagrams to Precambrian belts. Int Geol Rev 57: 1363–1386.
  • Verma SP, Verma SK, Pandarinath K, Rivera-Gómez MA (2011). Evaluation of recent tectonomagmatic discrimination diagrams and their application to the origin of basic magmas in Southern Mexico and Central America. Pure Appl Geophys 168: 1501–1525.
  • Vezzoli L, Tibaldi A, Renzulli A, Menna M, Flude S (2008). Faulting- assisted lateral collapses and influence on shallow magma feeding system at Ollague volcano (Central Volcanic Zone, Chile-Bolivia Andes). J Volcanol Geotherm Res 171: 137–159.
  • von Huene R (1989). The Middle America convergent plate boundary, Guatemala. In: Winterer EL, Hussong DM , Decker RW, editors. The Eastern Pacific Ocean and Hawaii. Boulder, CO, USA: Geological Society of America, pp. 535–550.
  • Wade JA, Plank T, Stern RJ, Tollstrup DL, Gill JB, O’Leary JC, Eiler JM, Moore RB, Woodhead JD, Trusdell F et al. (2005). The May 2003 eruption of Anatahan volcano, Mariana Islands: geochemical evolution of a silicic island-arc volcano. J Volcanol Geotherm Res 146: 139–170.
  • Walker JA, Carr MJ, Feigenson MD, Kalamarides RI (1990). The petrogenetic significance of interstratified high- and low-Ti basalts in central Nicaragua. J Petrol 31: 1141–1164.
  • Walker JA, Patino LC, Cameron BI, Carr MJ (2000). Petrogenetic insights provided by compositional transects across the Central American arc: southeastern Guatemala and Honduras. J Geophys Res 105: 18949–18963.
  • Walker JA, Patino LC, Carr MJ, Feigenson MD (2001). Slab control over HFSE depletions in central Nicaragua. Earth Planet Sci Lett 192: 533–543.
  • Walker JA, Teipel AP, Ryan JG, Syracuse E (2009). Light elements and Li isotopes across the northern portion of the Central American subduction zone. Geochem Geophys Geosys 10: 1–23.
  • Wallace PJ, Carmichael ISE (1999). Quaternary volcanism near the Valley of Mexico: implications for subduction zone magmatism and the effects of crustal thickness variations on primitive magma compositions. Contrib Mineral Petrol 135: 291–314.
  • Wassmer P, Geissert D, De Fraipont N, Enríquez-Fernandez E (2004). Morphological evolution of la Concepción Valley by huge mass movements on plateau edges in the Eastern part of the Mexican Volcanic Belt (Xalapa, Veracruz, Mexico). Acta Vulcanol 16: 125–132.
  • Witter JB, Kress VC, Newhall CG (2005). Volcán Popocatépetl, Mexico. Petrology, magma mixing, and immediate sources of volatiles for the 1994—Present eruption. J Petrol 46: 2337– 2366.
  • Woodhead JD (1988). The origin of geochemical variations in Mariana lavas: a general model for petrogenesis in intra- oceanic island arcs. J Petrol 29: 805–830.
  • Yang T, Grand SP, Wilson DS, Guzman-Speziale M, Gomez-Gonzalez JM, Dominguez-Reyes T, Ni J (2009). Seismic structure beneath the Rivera subduction zone from finite-frequency seismic tomography. J Geophys Res 114: B01302.
  • Zaid SM (2015a). Geochemistry of sandstones from the Pliocene Gabir Formation, north Marsa Alam, Red Sea, Egypt: Implication for provenance, weathering and tectonic setting. J Afr Earth Sci 102: 1–17.
  • Zaid SM (2015b). Integrated petrographic, mineralogical, and geochemical study of the Late Cretaceous-Early Tertiary Dakhla shales, Quseir–Nile Valley Province, central Egypt: implications for source area weathering, provenance, and tectonic setting. Arabian Journal of Geosciences (in press).
  • Zaid SM, Elbadry O, Ramadan Z, Mohamed M (2015). Petrography and geochemistry of Pharaonic sandstone monuments in Tall San Al Hagr, Al Sharqiya Governorate, Egypt: implications for provenance and tectonic setting. Turk J Earth Sci 24: 344–364.
  • Zaid SM, Gahtani FA (2015). Provenance, diagenesis, tectonic setting, and geochemistry of Hawkesbury Sandstone (Middle Triassic), southern Sydney Basin, Australia. Turk J Earth Sci 24: 72–98.
  • Zellmer GF, Hawkesworth CJ, Sparks RSJ, Thomas LE, Harford CL, Brewer TS, Loughlin SC (2003). Geochemical evolution of the Soufrière Hills volcano, Montserrat, Lesser Antilles volcanic arc. J Petrol 44: 1349–1374.
  • Zhang M, Suddaby P, Thompson RN, Thirlwall MF, Menzies MA (1995). Potassic volcanic rocks in NE China: geochemical constraints on mantle source and magma genesis. J Petrol 36: 1275–1303.
  • Zhao Z, Mo X, Dilek Y, Niu Y, DePaolo DJ, Robinson P, Zhu D, Sun C, Dong G, Zhou S et al. (2009). Geochemical and Sr-Nd-O isotopic compositions of the post-collisional ultrapotassic magmatism in SW Tibet: Petrogenesis and implications for India intra-continental subduction beneath southern Tibet. Lithos 113: 190–212.
  • Zheng YC, Hou ZQ, Li QY, Sun QZ, Liang W, Fu Q, Li W, Huang KX (2012). Origin of Late Oligocene adakitic intrusives in the southeastern Lhasa terrane: evidence from in situ zircon U–Pb dating, Hf–O isotopes, and whole-rock geochemistry. Lithos 148: 296–311.
  • Zhidan Z, Xuanxue M, Shuangquan Z, Tieying G, Su Z, Guochen D, Yong W (2001). Post-collisional magmatism in Wuyu basin, central Tibet: evidence for recycling of subducted Tethyan oceanic crust. Science in China (Series D) 44: 27–34.