Calcareous nannoplankton changes during the Paleocene-Eocene Thermal Maximum in West Central Sinai, Egypt

Abstract: The Upper Paleocene-Lower Eocene Hanadi and Dababiya Quarry members in West Central Sinai, Egypt, contain nannofossil taxa assigned to the NP9 and NP10 zones. The Hanadi Member displays lateral variation in thickness and is sharply overlain by a dark gray clay layer that defines the base of the Dababiya Quarry Member. The strata immediately overlying this layer contain nannofossil species assigned to the earliest Eocene. The lateral variation in thickness of the Hanadi Member and the abrupt lithological changes between the Hanadi and the Dababiya members probably suggest active syndepositional tectonism and possibly discontinuous sedimentation. The onset of the Eocene brought oceanic anoxic to dysoxic bottom water conditions as revealed by the dark gray and probably organic rich clay and the common occurrence of Chondrites trace fossils. The earliest Eocene calcareous nannofossil NP9b subzone is missing in the area of study and therefore the incoming of the Eocene is placed at the base of the NP10 zone at the first occurrences of Tribrachiatus bramlettei. The dominant nannofossil taxa around this boundary (Rhomboaster intermedia, R. bitrifida, and R. calcitrapa) in addition to Ericsonia subpertusa are interpreted as proxies for warm surface water. The abundance and diversity of Fasciculithus spp. decreased abruptly in the uppermost part of the NP9a subzone and they became fully extinct shortly above the Paleocene/Eocene interval (base of NP10 zone).

Calcareous nannoplankton changes during the Paleocene-Eocene Thermal Maximum in West Central Sinai, Egypt

Abstract: The Upper Paleocene-Lower Eocene Hanadi and Dababiya Quarry members in West Central Sinai, Egypt, contain nannofossil taxa assigned to the NP9 and NP10 zones. The Hanadi Member displays lateral variation in thickness and is sharply overlain by a dark gray clay layer that defines the base of the Dababiya Quarry Member. The strata immediately overlying this layer contain nannofossil species assigned to the earliest Eocene. The lateral variation in thickness of the Hanadi Member and the abrupt lithological changes between the Hanadi and the Dababiya members probably suggest active syndepositional tectonism and possibly discontinuous sedimentation. The onset of the Eocene brought oceanic anoxic to dysoxic bottom water conditions as revealed by the dark gray and probably organic rich clay and the common occurrence of Chondrites trace fossils. The earliest Eocene calcareous nannofossil NP9b subzone is missing in the area of study and therefore the incoming of the Eocene is placed at the base of the NP10 zone at the first occurrences of Tribrachiatus bramlettei. The dominant nannofossil taxa around this boundary (Rhomboaster intermedia, R. bitrifida, and R. calcitrapa) in addition to Ericsonia subpertusa are interpreted as proxies for warm surface water. The abundance and diversity of Fasciculithus spp. decreased abruptly in the uppermost part of the NP9a subzone and they became fully extinct shortly above the Paleocene/Eocene interval (base of NP10 zone).

___

  • Abu Shama A, Faris M, Al-Wosabi KA (2007). Upper Paleocene– lower Eocene calcareous nannofossil biostratigraphy and paleoecology of Gebel Matulla section, Southwestern Sinai, Egypt. In: Proceedings of the 5th International Conference on the Geology of Africa, Vol. 1, pp. 33–51.
  • Agnini C, Fornaciari E, Rio D, Tateo F, Backman J, Giusberti L (2007). Responses of calcareous nannofossil assemblages, mineralogy and geochemistry to the environmental perturbations across the Paleocene/Eocene boundary in the Venetian Pre-Alps. Mar Micropaleontol 63: 19–38.
  • Angori E, Monechi S (1996). High-resolution calcareous nannofossil biostratigraphy across the Paleocene/Eocene boundary at Caravaca (Southern Spain). Israel J Earth Sci 44: 197–206.
  • Aubry MP (1995). From chronology to stratigraphy: interpreting the stratigraphic record. In: Berggren WA, Kent DV, Aubry MP, Hardenbol J, editors. Geochronology, Time Scales and Global Stratigraphic Correlations: A Unified Temporal Framework for Historical Geology. Tulsa, OK, USA: Society of Economic Paleontologists, pp. 213–274.
  • Aubry MP (1996). Towards an Upper Paleocene-Lower Eocene high resolution stratigraphy based on calcareous nannofossil stratigraphy. Israel J Earth Sci 44: 239–253.
  • Aubry MP (1998). Early Paleogene nannoplankton evolution: a tale of climatic amelioration. In: Aubry MP, Lucas S, Berggren WA, editors. Late Paleocene and Early Eocene Climatic and Biotic Evolution. New York, NY, USA: Columbia University Press, pp. 158–203.
  • Aubry MP, Ouda K, Dupuis C, Berggren WA, Van Couvering JA, Ali J, Brinkhuis H, Gingerich PR, Heilmann-Clausen C, Hooker J et al. (2007). The Global Standard Stratotype-section and Point (GSSP) for the base of the Eocene Series in the Dababiya section (Egypt). Episodes 30: 271–286.
  • Aubry MP, Requirand C, Cook J (2000). The Rhomoaster- Tribrachiatus lineage: a remarkable succession of events from 55.5 to 53.2 ma. GFF 122: 15–18.
  • Aubry MP Salem R (2013). The Dababiya Core: a window into Paleocene to Early Eocene depositional history in Egypt based on coccolith stratigraphy. Stratigraphy 9: 287–346.
  • Berggren WA, Alegret L, Aubry MP, Cramer BS, Dupuis C, Goolaerts S, Kent DV, King C, Knox RWO, Obaidalla N et al (2012). The Dababiya Corehole: Upper Nile Valley, Egypt: preliminary results. Austrian J Earth Sci 105: 161–168.
  • Bolle MP, Pardo A, Hinrichs K, Adatte T, Von Salis K, Burns S, Keller G, Muzylev N (2000). The Paleocene-Eocene transition in the marginal northeastern Tethys (Kazakhstan and Uzbekistan). Int J Earth Sci 89: 390–414.
  • Bralower TJ (2002). Evidence of surface water oligotrophy during the Paleocene-Eocene Thermal Maximum: nannofossil assemblage data from Ocean Drilling Program Site 690 Maud Rise, Weddell Sea. Paleoceanography 17: 1–13.
  • Bralower TJ, Mutterlose J (1995). Calcareous nannofossil biostratigraphy of Site 865, Allison Guyot, Central Pacific Ocean: a tropical Paleogene reference section. Proceedings of the Ocean Drilling Program Scientific Results 143: 31–74.
  • Bromley RG, Ekdale AA (1984). Chondrites: a trace fossil indicator of anoxia in sediments. Science 224: 872–874.
  • Bukry D (1973). Low-latitude coccolith biostratigraphic zonation. In: Edgar NT, Saunders JB, editors. Initial Reports of the Deep Sea Drilling Project, Vol. 15. Washington, DC, USA: US Government Printing Office, pp. 685–703.
  • Bybell L, Self-Trail JM (1995). Evolutionary, Biostratigraphic, and Taxonomic Study of Calcareous Nannofossils from a Continuous Paleocene-Eocene Boundary Section in New Jersey. Reston, VA, USA: US Geological Survey.
  • Bybell LM, Self-Trail JM (1997). Late Paleocene and Early Eocene calcareous nannofossils from three boreholes in an onshore- offshore transect from New Jersey to the Atlantic Continental Rise. Proceedings of the Ocean Drilling Program Scientific Results 150: 91–110.
  • Catuneanu O (2006). Principles of Sequence Stratigraphy. Amsterdam, the Netherlands: Elsevier.
  • Crouch EM, Dickens GR, Brinkhuis H, Aubry MP, Hollis CJ, Rogers KM, Visscher H (2003). The Apectodinium acme and terrestrial discharge during the Paleocene-Eocene thermal maximum: new palynological, geochemical and calcareous nannoplankton observations at Tawanui, New Zealand. Palaeogeogra Palaeocl 194: 387–403.
  • Dickens G (2011). Down the rabbit hole: toward appropriate discussion of methane release from gas hydrate systems during the Paleocene–Eocene thermal maximum and other past hyperthermal events. Clim Past 7: 831–846.
  • Dupuis C, Aubry MP, Steurbaut E, Berggren WA, Ouda K, Magioncalda R, Cramer B, Kent DV, Speijer RP, Heilmann- Clausen C (2003). The Dababiya Quarry Section: lithostratigraphy, clay mineralogy, geochemistry and paleontology. Micropaleontology 49: 41–59.
  • Faris M, Abu Shama AM (2007). Nannofossil biostratigraphy of the Paleocene–Eocene succession in the Thamad area, East Central Sinai, Egypt. Micropaleontology 1–2: 127–144.
  • Faris M, Salem RF (2007). Paleocene–early Eocene calcareous nannofossil biostratigraphy in West Central Sinai, Egypt. In: Proceedings of the 8th Conference of Geology of Sinai for Development, Ismailia, Egypt, pp. 1–14.
  • Galeotti S, Krishnan S, Pagani M, Lanci L, Gaudio A, Zachos JC, Monechi S, Morelli G, Lourens L (2010). Orbital chronology of Early Eocene hyperthermals from the Contessa Road section, central Italy. Earth Planetary Sci Letter 290: 192–200.
  • Galloway WE (1989). Genetic stratigraphic sequences in basin analysis, I: Architecture and genesis of flooding surface bounded depositional units. AAPG Bull 73: 125–142.
  • Gavrilov YO, Kodina LA, Lubchenko IY, Muzylev NG (1997). The late Paleocene anoxic event in epicontinental seas of peri- Tethys and formation of the sapropelite unit; sedimentology and geochemistry. Lithology Mineral Resources 32: 427–450.
  • Gibbs SJ, Bralower T, Bown PR, Zachos JC, Bybell LM (2006). Shelf and open-ocean calcareous phytoplankton assemblages across the Paleocene-Eocene Thermal Maximum: implications for global productivity gradients. Geology 34: 233–236.
  • Giusberti L, Coccioni R, Sprovieri M, Tateo F (2009). Perturbation at the sea floor during the Paleocene–Eocene thermal maximum: evidence from benthic foraminifera at Contessa Road, Italy. Mar Micropaleontol 70: 102–119.
  • Höntzsch S, Schneiber C, Kuss J, Marzouk AM, Rasser MW (2011). Tectonically driven carbonate ramp evolution at the southern Tethyan shelf: the Lower Eocene succession of the Galala Mountains, Egypt. Facies 57: 51–72.
  • Jiang S, Wise SW (2006). Surface-water chemistry and fertility variations in the tropical Atlantic across the Paleocene/Eocene Thermal Maximum as evidenced by calcareous nannoplankton from ODP Leg 207, Hole 1259B. Revue de Micropaléontologie 49: 227–244.
  • Kahn A, Aubry MP (2004). Provincialism associated with the Paleocene/Eocene Thermal Maximum: temporal constraint. Mar Micropaleontol 52: 117–131.
  • Khozyem H, Adatte T, Spangenberg JE, Tantawy A, Keller G (2013). Palaeoenvironmental and climatic changes during the Palaeocene–Eocene Thermal Maximum (PETM) at the Wadi Nukhul Section, Sinai, Egypt. J Geol Soc London 170: 341–352.
  • Knox R, Aubry MP, Berggren W, Dupuis C, Ouda K, Magioncalda R, Soliman M (2003). The Qreiya section at Gebel Abu Had: lithostratigraphy, clay mineralogy, geochemistry and biostratigraphy. Micropaleontology 49: 93–104.
  • Lüning S, Marzouk AM, Kuss J (1998). The Palaeocene of Central East Sinai, Egypt: ‘Sequence stratigraphy’ in monotonous hemipelagites. J Foraminiferal Research 28: 19–39.
  • Mandur M, Bayoumi A (2010). Calcareous nannofossil of the Upper Cretaceous/Lower Eocene succession in the southwestern Sinai area, Egypt. World J Earth Sci 1: 28–37.
  • Martini E (1971). Standard Tertiary and Quaternary calcareous nannoplankton zonation. In: Proceedings of the Second Planktonic Conference, Vol. 2, Rome, Italy, pp. 739–777.
  • Monechi S, Angori E, von Salis K (2000). Calcareous nannofossil turnover around the Paleocene/Eocene transition at Alamedilla (southern Spain). Bulletin de la Societe Geologique de France 171: 477–489.
  • Morsi AM, Faris M, Zalat A, Salem RF (2008). Maastrichtian–Early Eocene ostracodes from west-central Sinai, Egypt – taxonomy, biostratigraphy, paleoecology and paleobiogeography. Revue de Paléobiologie 27: 159–189.
  • Mutterlose J, Linnert C, Norris RD (2007). Calcareous nannofossils from the Paleocene-Eocene Thermal Maximum of the equatorial Atlantic (ODP Site 1260B): evidence for tropical warming. Mar Micropaleontol 65: 13–31.
  • Obaidalla N (2000). Planktonic foraminiferal biostratigraphy and faunal turnover events during the Late Cretaceous-Early Tertiary along the Red Sea Coast, Egypt. J African Earth Sci 31: 571–595.
  • Obaidalla NA (2006). Foraminiferal events across the Paleocene/ Eocene (P/E) transition at Wadi Tarfa, north Eastern Desert, Egypt. Bulletin of Faculty of Science of Assiut University 35: 1–37.
  • Okada H, Bukry D (1980). Supplementary modification and introduction of code numbers to the low latitude coccolith biostratigraphic zonation (Bukry, 1973, 1975). Mar Micropaleontol 5: 321–325.
  • Ouda K, Aubry MP (2003). The Paleocene-Lower Eocene of the Upper Nile Valley: Part 1: stratigraphy. Micropaleontology 49: 1–212.
  • Perch-Nielsen K (1985). Cenozoic calcareous nannofossils. In: Bolli HM, Saunders JB, Perch-Nielsen K, editors. Plankton Stratigraphy. Cambridge, UK: Cambridge University Press, pp. 427–554.
  • Plummer PS, Gostin VA (1981). Shrinkage cracks: desiccation or synaeresis? Journal of Sedimentary Geology 51: 1147–1156.
  • Proto-Decima F, Roth PH, Todesco L (1975). Nannoplancton calcareo del Paleocene e dell’Eocene della sezione di Possagno. Schweiz Palaentol Abh 97: 35–55 (in Italian).
  • Raffi I, Backman J, Palike H (2005). Changes in calcareous nannofossil assemblages across the Paleocene/Eocene transition from the paleo-equatorial Pacific Ocean. Palaeogeogra Palaeocl 226: 93–126.
  • Raffi I, Backman J, Zachos JC, Sluijs A (2009). The response of calcareous nannofossil assemblages to the Paleocene Eocene Thermal Maximum at the Walvis Ridge in the South Atlantic. Mar Micropaleontol 70: 201–212.
  • Romein AJT (1979). Lineages in Early Paleogene calcareous nannoplankton. Utrecht Micropaleontology Bull 22: 1–231.
  • Said R (1962). The Geology of Egypt. Amsterdam, the Netherlands: Elsevier.
  • Scheibner C, Speijer RP (2008). Late Paleocene–early Eocene Tethyan carbonate platform evolution—a response to long- and short- term paleoclimatic change. Earth Science Review 90: 71–102.
  • Self-Trail JM (2011). Paleogene calcareous nannofossils of Southern Maryland, South Dover Bridge Core, USA. Journal of Nannoplankton Research 32: 1–28.
  • Self-Trail JM, Powars DS, Watkins D, Gregory K, Wandless A (2012). Calcareous nannofossil assemblage changes across the Paleocene–Eocene Thermal Maximum: evidence from a shelf setting. Mar Micropaleontol 92–93: 61–80.
  • Soliman MF, Ahmed EA, Kurzweil H (2006). Geochemistry and mineralogy of the Paleocene/Eocene boundary at Gabal Dababiya (GSSP) and Gabal Owaina sections, Nile Valley, Egypt. Stratigraphy 3: 31–52.
  • Speijer RP, Schmitz B, Luger P (2000). Stratigraphy of late Paleocene events in the Middle East: implications for low- to middle- latitude successions and correlations. J Geol Soc London 157: 37–47.
  • Speijer RP, Schmitz B, van der Zwaan GJ (1997). Benthic foraminiferal extinction and repopulation in response to latest Paleocene Tethyan anoxia. Geology 25: 683–686.
  • Speijer RP, Wagner T (2002). Sea-level changes and black shales associated with the late Paleocene thermal maximum: Organic-geochemical and micropaleontologic evidence from the southern Tethyan margin (Egypt–Israel). In: Koeberl C, MacLeod KG, editors. Catastrophic Events and Mass Extinctions: Impacts and Beyond. Boulder, CO, USA: Geological Society of America, pp. 533–549.
  • Tantawy AAM (2006). Calcareous nannofossils of the Paleocene- Eocene transition at Qena Region, Central Nile Valley, Egypt. Micropaleontology 52: 193–222.
  • Tremolada F, Bralower TJ (2004). Nannofossil assemblage fluctuations during the Paleocene/Eocene Thermal Maximum at Sites 213 (Indian Ocean) and 401 (North Atlantic Ocean): paleoceanographic implications. Mar Micropaleontol 52: 107– 116.
  • Wei W, Wise SW Jr (1990). Middle Eocene to Pleistocene calcareous nannofossils recovered by Ocean Drilling Program Leg 113 in the Weddell Sea. In: Barker PF, Kennett JP, editors. Proceedings of the ODP, Scientific Results, Vol. 113. College Station, TX, USA: Ocean Drilling Program, pp. 639–666. 
  • Von Salis K, Monechi S, Bybell LM, Self-Trail J, Young JR (2000). Remarks on the calcareous nannofossil genera Rhomboaster and Tribrachiatus around the Paleocene/Eocene boundary. GFF 122: 138–140.
  • Von Salis K, Ouda K, Saad El Din M, Tantawy AA, Bernasconi S (1998). Calcareous nannofossils, foraminifera and stable isotope studies from the P/E boundary sections in Egypt. Strata 9: 113–115.
  • Zachos J, Rohl U, Schellenberg SA, Sluijis A, Hodell DA, Kelly DC, Thomas E, Nicolo M, Raffi I, Lourens LJ et al. (2005). Rapid acidification of the ocean during the Paleocene-Eocene Thermal Maximum. Science 308: 1611–1615.
  • Zachos J, Wara M, Bohaty S, Delaney M, Petrizzo M, Brill A, Bralower T, Premoli-Silva I (2003). A transient rise in tropical sea surface temperature during the Paleocene–Eocene thermal maximum. Science 302: 1551–1554.