Overview on GPlates: focus on plate reconstruction

Overview on GPlates: focus on plate reconstruction

Plate tectonic reconstructions have been employed in geosciences since 1970s, in the context of hydrocarbon exploration, regional geology and paleobiology. Such studies have given valuable inputs for climate and geodynamic computations, present-day mantle structure, models of plate motion, and the interpretation of the drift of hotspots, true polar wander (TPW), sea level and stratigraphic signals. However, geodynamic models generated in the past by incorporating global plate tectonic reconstructions have limitations. To overcome this, GPlates software brings forward a new era of interactive plate tectonic reconstruction software integrated with GIS databases that incorporates a wide variety of geological and geophysical data. Besides modelling tectonic and crustal evolution, GPlates has also been used in visualizing paleogeography and paleobathymetry, in understanding deep carbon cycle, subduction zone initiation, mantle evolution, investigating earthquakes and predicting future supercontinents. the software has been widely used in hydrocarbon exploration along the passive conjugate margins such as from the margins of South America and Africa and has provided promising results in acquiring new and more reliable prospecting criteria for petroleum systems. Additionally, it has become an integral tool for paleolatitude calculations, modelling of paleoclimate and paleoenvironment. This article reviews key plate reconstructions that have been carried out using GPlates, the typical constraints and the set of input parameters.

___

  • Allen BJ, Wignall PB, Hill DJ, Saupe EE, Dunhill AM (2020). The latitudinal diversity gradient of tetrapods across the PermoTriassic mass extinction and recovery interval. Proceedings of the Royal Society B: Biological Sciences 287: 20201125.
  • Angrand P, Mouthereau F, Masini E, Asti R (2020). A reconstruction of Iberia accounting for Western Tethys-North Atlantic kinematics since the late-Permian-Triassic. Solid Earth 11 (4): 1313–1332.
  • Antell GS, Kiessling W, Aberhan M, Saupe EE (2020). Marine Biodiversity and Geographic Distributions Are Independent on Large Scales. Current Biology 30 (1): 115-121.e5.
  • Antonio PYJ, Baratoux L, Trindade RIF, Rousse S, Ayite A et al. (2021). West Africa in Rodinia: High quality paleomagnetic pole from the ~ 860 Ma Manso dyke swarm (Ghana). Gondwana Research 94: 28–43.
  • Arboit F, Amrouch K, Morley C, Collins AS, King R (2017). Palaeostress magnitudes in the KhaoKhwang fold-thrust belt, new insights into the tectonic evolution of the Indosinian orogeny in central Thailand. Tectonophysics 710–711: 266– 276.
  • Arnould M, Coltice N, Flament N, Mallard C (2020). Plate tectonics and mantle controls on plume dynamics. Earth and Planetary Science Letters 547: 116439.
  • Baca SM, Short AEZ (2020). Molecular Phylogeny of the Notomicrine Water Beetles (Coleoptera: Noteridae) Reveals Signatures of Gondwanan Vicariance and Ecological Plasticity. Insect Systematics and Diversity 4 (6). doi: 10.1093/isd/ixaa015
  • Bai Y, Wang X, Dong D, Brune S, Wu S et al. (2020). Symmetry of the South China Sea conjugate margins in a rifting, drifting and collision context. Marine and Petroleum Geology 117: 104397.
  • Bai Y, Wu S, Liu Z, Müller RD, Williams SE et al. (2015). Full-fit reconstruction of the South China Sea conjugate margins. Tectonophysics 661: 121–135.
  • Bastos LPH, Pereira E, da Costa CD, Ferreira Alferes CL, de Menezes JC et al. (2020). Expression of Early Cretaceous global anoxic events in Northeastern Brazilian basins. Cretaceous Research 110: 104390.
  • Blischke A, Stoker MS, Brandsdóttir B, Hopper JR, Peron-Pinvidic G et al. (2019). The Jan Mayen microcontinent’s Cenozoic stratigraphic succession and structural evolution within the NE-Atlantic. Marine and Petroleum Geology 103: 702–737.
  • Boyden JA, Müller RD, Gurnis M, Torsvik TT, Clark JA et al. (2011) Next-generation plate-tectonic reconstructions using GPlates. In: Keller GR, Baru C (eds.) Geoinformatics: Cyberinfrastructure for the Solid Earth Sciences, Cambridge University Press, pp. 95-114. ISBN: 978-0-521-89715-0.
  • Brune S, Williams SE, Müller RD (2017). Potential links between continental rifting, CO2 degassing and climate change through time. Nature Geoscience 10: 941–946.
  • Brune S, Williams SE, Butterworth NP, Müller RD. (2016). Abrupt plate accelerations shape rifted continental margins. Nature 536: 201-204.
  • Brune S, Williams SE, Müller RD. (2017). Potential links between continental rifting, CO2 degassing and climate change through time. Nature Geoscience 10: 941-946.
  • Brune S, Williams SE, Müller RD (2018). Oblique rifting: the rule, not the exception. Solid Earth 9: 1187-1206.
  • Bryant I, Dally P, Drlbus J, Fainstein J (2012). Basin to basin: Plate tectonics in exploration. Oilfield Review 24: 38-57.
  • Butterworth N, Steinberg D, Müller RD, Williams S, Hardy S et al. (2015). Identifying tectonic niche environments of South American porphyry magmatism through geological time: a spatio-temporal data mining approach. ASEG Extended Abstracts, 1-4.
  • Butterworth N, Steinberg D, Müller RD, Williams S, Merdith AS et al. (2016). Tectonic environments of South American porphyry copper magmatism through time revealed by spatiotemporal data mining. Tectonics 35: 2847-2862.
  • Cao W, Flament N, Zahirovic S, Williams S, Müller RD (2019). The interplay of dynamic topography and eustasy on continental flooding in the late Paleozoic. Tectonophysics 761: 108–121.
  • Cao W, Zahirovic S, Flament N, Williams S, Golonka J et al. (2017). Improving global paleogeography since the late Paleozoic using paleobiology. Biogeosciences 14: 5425-5439.
  • Cao X, Flament N, Müller RD (2021). Coupled evolution of plate tectonics and basal mantle structure. Geochemistry, Geophysics, Geosystems 22: e2020GC00924.
  • Cao X, Zahirovic S, Li S, Suo Y, Wang P et al (2020). A deforming plate tectonic model of the South China Block since the Jurassic. Gondwana Research 102: 3-16.
  • Chauvet F, Sapin F, Geoffroy L, Ringenbach JC, Ferry JN (2021). Conjugate volcanic passive margins in the austral segment of the South Atlantic – Architecture and development. In Earth-Science Reviews (Vol. 212). Elsevier B.V. doi: 10.1016/j. earscirev.2020.103461
  • Clennett EJ., Sigloch K, Mihalynuk MG, Seton M, Henderson MA et al. (2020). A quantitative tomotectonic plate reconstruction of western north america and the eastern Pacific Basin. Geochemistry, Geophysics, Geosystems 21: e2020GC00911.
  • Collins AS., Blades ML, Merdith AS, Foden JD (2021). Closure of the Proterozoic Mozambique Ocean was instigated by a late Tonian plate reorganization event. Communications Earth & Environment 2: 1-7.
  • Crameri F, Magni V, Domeier M, Shephard GE, Chotalia K et al. (2020). A transdisciplinary and community-driven database to unravel subduction zone initiation. Nature Communications 11: 3750.
  • Dallanave E, Maurizot P, Agnini C, Sutherland R, Hollis CJ et al. (2020). Eocene (46–44 Ma) onset of Australia-Pacific plate motion in the southwest pacific inferred from stratigraphy in new caledonia and New Zealand. Geochemistry, Geophysics, Geosystems 21: e2019GC00869.
  • Dasgupta R, Mandal N, Lee C (2021). Controls of subducting slab dip and age on the extensional versus compressional deformation in the overriding plate. Tectonophysics 801: 228716.
  • Davey SC, Bleeker W, Kamo SL, Vuollo J, Ernst RE et al. (2020). Archean block rotation in Western Karelia: Resolving dyke swarm patterns in metacraton Karelia-Kola for a refined paleogeographic reconstruction of supercratonSuperia. Lithos 105553: 368–369.
  • Davies HS, Green JAM, Duarte JC (2018). Back to the future: Testing different scenarios for the next supercontinent gathering. Global and Planetary Change 169: 133–144. doi: 10.1016/j. gloplacha.2018.07.015
  • Davydov VI, Karasev EV, Nurgalieva NG, Schmitz MD, Budnikov IV et al. (2021). Climate and biotic evolution during the Permian-Triassic transition in the temperate Northern Hemisphere, Kuznetsk Basin, Siberia, Russia. Palaeogeography, Palaeoclimatology, Palaeoecology 573: 110432.
  • Diaz-Rodriguez J, Müller RD, Chandra R (2021). Predicting the emplacement of Cordilleran porphyry copper systems using a spatio-temporal machine learning model. Ore Geology Reviews 137: 104300.
  • Domeier M (2016). A plate tectonic scenario for the Iapetus and Rheic oceans. Gondwana Research 36: 275–295.
  • Dumais MA, Gernigon L, Olesen O, Johansen S,, Brönner M (2021). New interpretation of the spreading evolution of the Knipovich Ridge derived from aeromagnetic data. Geophysical Journal International 224: 1422–1428.
  • Engen O, Asa E, Engen Ø (2000). Plate Reconstruction: MathematicalPhysical Framework and Selected Case Studies. https://www. researchgate.net/publication/239918790 (Accessed on 12- Feb-2022)
  • Enkelmann E, Finzel E, Arkle J (2019). Deformation at the eastern margin of the Northern Canadian Cordillera: Potentially related to opening of the North Atlantic. Terra Nova 31: 151– 158.
  • Evangelinos D, Escutia C, Etourneau J, Hoem F, Bijl P et al. (2020). Late oligocene-miocene proto-antarctic circumpolar current dynamics off the wilkes land margin, East Antarctica. Global and Planetary Change 191: 103221.
  • Evenick JC. (2020). Late Cretaceous (Cenomanian and Turonian) organofacies and TOC maps: Example of leveraging the global rise in public-domain geochemical source rock data. Marine and Petroleum Geology 111: 301–308.
  • Flament N, Gurnis M, Williams S, Seton M, Skogseid J et al. (2014). Topographic asymmetry of the South Atlantic from global models of mantle flow and lithospheric stretching. Earth and Planetary Science Letters 387: 107–119.
  • Fuston S, Wu J (2021). Raising the Resurrection plate from an unfolded-slab plate tectonic reconstruction of northwestern North America since early Cenozoic time. GSA Bulletin 133: 1128–1140.
  • Gallahue MM, Stein S, Stein CA, Jurdy D, Barklage M. et al. (2020). A compilation of igneous rock volumes at volcanic passive continental margins from interpreted seismic profiles. Marine and Petroleum Geology 122: 104635.
  • Galvão ILG, de Castro DL (2017). Contribution of global potential field data to the tectonic reconstruction of the Rio Grande Rise in the South Atlantic. Marine and Petroleum Geology 86: 932–949.
  • Garibian P, Karabanov D, Neretina A, Taylor D, Kotov A (2020). One More “Living Fossil”: Mesozoic Lineage Differentiation, Morphological Stasis and Weak Phylogeographic Structure in Eurasia in the BosminopsisDeitersi Group (Crustacea: Cladocera: Bosminidae). Research Square. doi: 10.21203/ rs.3.rs-45963/v1
  • Gernon T, Barr R, Fitton J, Hincks T, Longman J et al. (2020). Mobilization of lithospheric mantle carbon during the Palaeocene-Eocene thermal maximum. Research Square. doi: 10.21203/rs.3.rs-333061/v1
  • Gernon TM, Hincks TK, Merdith AS, Rohling EJ, Palmer MR et al. (2021a). Global chemical weathering dominated by continental arcs since the mid-Palaeozoic. Nature Geoscience 14: 690-696.
  • Gernon T, Jones S, Brune S, Hincks T, Glerum A et al (2021b). Diamond ascent by rift-driven disruption of cratonic mantle keels. Research Square. doi: 10.21203/rs.3.rs-986686/v1
  • Gernon TM, Hincks TK, Merdith AS, Rohling EJ, Palmer MR (2021c). Global chemical weathering dominated by continental arcs since the mid-Paleozoic Deep-time data mining. Nature Geoscience 14: 690-693.
  • Geuna SE, Escosteguy LD, Díaz Appella B, Pinotti L (2021). The geodynamic evolution of the Famatinian orogen from the paleomagnetic record of El Hongotrondhjemite (Early Paleozoic, Sierras Pampeanas de Córdoba, Argentina). Journal of South American Earth Sciences 106: 103059.
  • Gianni GM, Navarrete C, Spagnotto S (2019). Surface and mantle records reveal an ancient slab tear beneath Gondwana. Scientific Reports 9: 19774.
  • Gibbons AD, Zahirovic S, Müller RD, Whittaker JM., Yatheesh V (2015). A tectonic model reconciling evidence for the collisions between India, Eurasia and intra-oceanic arcs of the centraleastern Tethys. Gondwana Research 28: 451-492.
  • Gibbons AD., Barckhausen U, van den Bogaard P, Hoernle K, Werner R et al (2012a). Constraining the Jurassic extent of Greater India: Tectonic evolution of the West Australian margin. Geochemistry, Geophysics, Geosystems, 13: Q05W13.
  • Gibbons AD, Whittaker JM, Müller RD (2013). The breakup of East Gondwana: Assimilating constraints from Cretaceous ocean basins around India into a best-fit tectonic model. Journal of Geophysical Research: Solid Earth 118: 808–822.
  • Gion AM, Williams SE, Müller RD (2017). A reconstruction of the Eurekan Orogeny incorporating deformation constraints. Tectonics 36: 304–320. doi: 10.1002/2015TC004094
  • Gómez-Garciá ÁM, Le Breton E, Scheck-Wenderoth M, Monsalve G, Anikiev D (2021). The preserved plume of the Caribbean Large Igneous Plateau revealed by 3D data-integrative models. Solid Earth 12: 275–298.
  • Graça MC, Kusznir N, Gomes Stanton NS. (2019). Crustal thickness mapping of the central South Atlantic and the geodynamic development of the Rio Grande Rise and Walvis Ridge. Marine and Petroleum Geology 101: 230–242.
  • Gupta S, Chatterjee S, Arora D, Bose S, Dobe R (2021). Locating the Indo-Antarctica suture – Correlating the Rengali, Rauer and Ruker terranes in Gondwana. Polar Science 30: 100689.
  • Gurnis M, Bower DJ, Turner M, Yang T, Flament N et al. (2019). Creating 4-D Earth models using GPlates, CitcomS and the Geodynamic Framework. URL: file:///C:/Users/Admin/ Desktop/New%20ref%20for%20Shatavisa%20article/ Gurnis%20et%20al%202019.pdf (Accessed on 19-Feb2022)
  • Gurnis M, Turner M, Zahirovic S, DiCaprio L, Spasojevic S et al. (2012). Plate tectonic reconstructions with continuously closing plates. Computers and Geosciences 38: 35–42.
  • Harrington L, Zahirovic S, Salles T, Braz C, Müller RD (2019). Tectonic, geodynamic and surface process driving forces of Australia’s paleogeography since the Jurassic. In Keep M, Moss SJ (eds) The Sedimentary Basins of Western Australia V: Proceedings of the Petroleum Exploration Society of Australia Symposium.
  • Hayek JN, Vilacís B, Bunge HP., Friedrich AM., Carena S et al. (2020). Continent-scale Hiatus Maps for the Atlantic Realm and Australia since the Upper Jurassic and links to mantle flow induced dynamic topography. Proceedings of the Royal Society A, 476: 20200390.
  • Heine C, Quevedo L, Mckay H, Müller RD. (internet reference). Plate Tectonic Consequences of competing models for the origin and history of the Banda Sea subducted oceanic lithosphere. URL: https://arxiv.org/ftp/arxiv/papers/1210/1210.4958.pdf (Accessed on 18-Feb-2022)
  • Heron PJ, Peace AL, McCaffrey KJW, Welford JK., Wilson R et al. (2019). Segmentation of Rifts Through Structural Inheritance: Creation of the Davis Strait. Tectonics 38: 2411–2430.
  • He Z, Zhang Z, Guo Z. (2019). Reconstructing early Eocene (~55 Ma) paleogeographic boundary conditions for use in paleoclimate modelling. Science China Earth Sciences 62: 1416–1427.
  • Hjálmarsdóttir HR. (2019). Quantitative biostratigraphy of Middle Jurassic – Early Cretaceous foraminiferal events from the Arctic. Revue de Micropaleontologie 64: 100358.
  • Hochmuth K, Gohl K, Leitchenkov G, Sauermilch I, Whittaker JM et al. (2020). The evolving paleobathymetry of the circumantarctic southern ocean since 34 Ma: A key to understanding past cryosphere-ocean developments. Geochemistry, Geophysics, Geosystems 21: e2020GC00912.
  • Hou Z-shuai, Fan, J-xuan, Henderson CM, Yuan D-xun, Shen B-heng et al. (2020). Dynamic palaeogeographic reconstructions of the Wuchiapingian Stage (Lopingian, Late Permian) for the South China Block. Palaeogeography, Palaeoclimatology, Palaeoecology 546: 109667.
  • Hu J, Gurnis M (2020). Subduction duration and slab dip. Geochemistry, Geophysics, Geosystems 21: e2019GC008862.
  • Hu J, Gurnis M, Rudi J, Stadler G, Müller RD (2022). Dynamics of the abrupt change in Pacific Plate motion around 50 million years ago. Nature Geoscience 15:74-78.
  • Hu J, Liu L, Gurnis M. 2021. Southward expanding plate coupling due to variation in sediment subduction as a cause of Andean growth. Nature communications 12: 1-9.
  • Jaju MM, Mort HP, Nader FH, Filho ML, Macdonald DIM. (2018). Palaeogeographical and palaeoclimatic evolution of the intracratonicParnaíba Basin, NE Brazil using GPlates plate tectonic reconstructions and chemostratigraphic tools. In: Daly MC, Fuck RA, Julià J, Macdonald DIM, Watts AB (eds). Cratonic Basin Formation: A Case Study of the Parnaíba Basin of Brazil. Geological Society, London, Special Publications 472: 199-222.
  • Ogg JG, Scotese CR, Hou M, Chen A, Ogg GM. et al. (2017). Global Paleogeography through the Proterozoic and Phanerozoic: Goals and Challenges. Acta Geologica Sinica 93: 59-60.
  • Johansson L, Zahirovic S, Müller RD (2018). The interplay between the eruption and weathering of large igneous provinces and the deep-time carbon cycle. Geophysical Research Letters 45: 5380–5389.
  • Karlsen KS, Domeier M, Gaina C, Conrad CP (2020). A tracer-based algorithm for automatic generation of seafloor age grids from plate tectonic reconstructions. Computers & Geosciences 140: 104508.
  • King MT, Welford JK, Peace AL (2020). Investigating the role of the Galicia Bank on the formation of the North West Iberian margin using deformable plate tectonic models. Tectonophysics 789: 228537.
  • Klages JP, Salzmann U, Bickert T, Hillenbrand CD, Gohl K et al. (2020). Temperate rainforests near the South Pole during peak Cretaceous warmth. Nature 580: 81–86.
  • Kroner U, Stephan T, Romer RL, Roscher M (2021). Paleozoic plate kinematics during the pannotia–pangaea supercontinent cycle. In: Murphy JB, Strachan RA, Quesada C. (eds) Pannotia to Pangaea: Neoproterozoic and Paleozoic Orogenic Cycles in the Circum-Atlantic Region. Geological Society, London, Special Publications 503: 83–104.
  • Kundrát M, Rich TH, Lindgren J, Sjövall P, Vickers-Rich P (2020). A polar dinosaur feather assemblage from Australia. Gondwana Research 80: 1–11.
  • Lasabuda A, Laberg JS, Knutsen SM, Høgseth G (2018). Early to middle Cenozoicpaleoenvironment and erosion estimates of the southwestern Barents Sea: Insights from a regional massbalance approach. Marine and Petroleum Geology 96: 501– 521.
  • Le Breton E, Brune S, Ustaszewski K, Zahirovic S, Seton M et al. (2021). Kinematics and extent of the Piemont-Liguria Basin – implications for subduction processes in the Alps. Solid Earth Discussions 12: 885-913.
  • Li C, Hu X, Wang, J, Vermeesch P, Garzanti E (2020). Sandstone provenance analysis in Longyan supports the existence of a Late Paleozoic continental arc in South China. Tectonophysics 780: 228400.
  • Li SZ, Li XY, Wang GZ, Liu YM, Wang ZC et al. (2019). Global Meso-Neoproterozoic plate reconstruction and formation mechanism for Precambrian basins: Constraints from three cratons in China. Earth-Science Reviews 198: 102946.
  • Li SZ, Suo YH, Li XY, Liu B, Dai LM et al. (2018). Microplate Tectonics? new insights from micro-blocks in the global oceans, continental margins and deep mantle. Earth-Science Reviews 185: 1029-1064.
  • Liu S, Gurnis M, Ma P, Zhang B (2017). Reconstruction of northeast Asian deformation integrated with western Pacific plate subduction since 200 Ma. In Earth-Science Reviews 175: 114– 142.
  • Li ZX, Evans DAD (2011). Late Neoproterozoic 40° intraplate rotation within Australia allows for a tighter-fitting and longerlasting Rodinia. Geology 39: 39–42.
  • Li ZX, Bogdanova SV, Collins AS, Davidson A, de Waele B et al. (2008). Assembly, configuration, and break-up history of Rodinia: A synthesis. Precambrian Research 160: 179–210.
  • Loncke L, Roest WR, Klingelhoefer F, Basile C, Graindorge D et al. (2020). Transform marginal plateaus. Earth-Science Reviews 203: 102940.
  • Maritati A, Halpin JA, Whittaker JM, Daczko NR, Wainman CC (2021). Provenance of Upper Jurassic–Lower Cretaceous strata in the Mentelle Basin, southwestern Australia, reveals a transGondwanan fluvial pathway. Gondwana Research 93: 128–141.
  • Matthews KJ, Maloney KT, Zahirovic S, Williams SE, Seton M et al. (2016a). Global plate boundary evolution and kinematics since the late Paleozoic. Global and Planetary Change 146: 226–250.
  • Matthews KJ, Maloney KT, Zahirovic S, Williams SE, Seton M et al. (2016b). Global plate boundary evolution and kinematics since the late Paleozoic. Global and Planetary Change 146: 226–250.
  • Mazumder S, Tep B, Pangtey KKS, Das KK, Mitra DS (2017). Probable existence of a Gondwana transcontinental rift system in western India: Implications in hydrocarbon exploration in kutch and saurashtra offshore: A GIS-based approach. Journal of Earth System Science 126: 81.
  • McGirr R, Seton M, Williams S (2021). Kinematic and geodynamic evolution of the Isthmus of Panama region: Implications for Central American Seaway closure. Bulletin of the Geological Society of America 133: 867–884.
  • Menant A, Jolivet L, Vrielynck B (2016). Kinematic reconstructions and magmatic evolution illuminating crustal and mantle dynamics of the eastern Mediterranean region since the late Cretaceous. Tectonophysics 675: 103–140.
  • Merdith AS (2017). Kinematic Plate Models of the Neoproterozoic. Ph.D. thesis. The University of Sydney.
  • Merdith AS, Collins AS, Williams SE, Pisarevsky S, Foden JD Et et al. (2017). A full-plate global reconstruction of the Neoproterozoic. Gondwana Research 50: 84–134.
  • Merdith AS, del Real PG, Daniel I, Andreani M, Wright NM et al. (2020). Pulsated Global Hydrogen and Methane Flux at MidOcean Ridges Driven by Pangea Breakup. Geochemistry, Geophysics, Geosystems 21: e2019GC008869.
  • Merdith AS, Williams SE, Collins AS, Tetley MG, Mulder JA et al. (2021a). Extending full-plate tectonic models into deep time: Linking the Neoproterozoic and the Phanerozoic. EarthScience Reviews 214: 103477.
  • Merdith AS, Williams SE, Collins AS, Tetley MG, Mulder JA et al. (2021b). Extending full-plate tectonic models into deep time: Linking the Neoproterozoic and the Phanerozoic. EarthScience Reviews 214: 103477. Merdith AS, Williams SE, Müller RD, Collins AS (2017). Kinematic constraints on the Rodinia to Gondwana transition. Precambrian Research 299:132-150.
  • Michel J, Lanteaume C, Lettéron A, Kenter J, Morsilli M et al. (2020). Oligocene and miocene global spatial trends of shallow-marine carbonate architecture. Journal of Geology 128: 563–570.
  • Mitrovica JX, Austermann J, Coulson S, Creveling JR, Hoggard MJ et al. (2020). Dynamic Topography and Ice Age Paleoclimate. doi: 10.1146/annurev-earth-082517
  • Montes C, Bayona G, Cardona A, Buchs DM, Silva CA et al. (2012). Arc-continent collision and orocline formation: Closing of the Central American seaway. Journal of Geophysical Research: Solid Earth 117: B04105.
  • Montes C, Cardona A, McFadden R, Morón SE, Silva CA et al. (2012). Evidence for middle Eocene and younger land emergence in central Panama: Implications for Isthmus closure. Bulletin of the Geological Society of America 124: 780–799.
  • Montes C, Rodriguez-Corcho AF, Bayona G, Hoyos N, Zapata S et al. (2019). GPlates dataset for the tectonic reconstruction of the Northern Andes-Caribbean Margin. Data in Brief 25: 104398.
  • Morrison SM, Buongiorno J, Downs RT, Eleish A, Fox P et al. (2020). Exploring Carbon Mineral Systems: Recent Advances in C Mineral Evolution, Mineral Ecology, and Network Analysis. Frontiers in Earth Science 8: 208.
  • Müller RD, Cannon J, Qin X, Watson RJ, Gurnis M et al. (2018). GPlates: building a virtual Earth through deep time. Geochemistry, Geophysics, Geosystems 19:2243-2261.
  • Müller RD, Cannon J, Williams S, Dutkiewicz A (2018). PyBacktrack 1.0: A tool for reconstructing paleobathymetry on oceanic and continental crust. Geochemistry, Geophysics, Geosystems 19: 1898-1909.
  • Müller RD, Dutkiewicz A (2018). Oceanic crustal carbon cycle drives 26-million-year atmospheric carbon dioxide periodicities. Science Advances 4: eaaq0500.
  • Müller RD, Russell SHJ, Zahirovic S, Williams SE, Williams CS (2018). Modelling and visualising distributed crustal deformation of Australia and Zealandia using GPlates 2.0. ASEG Extended Abstracts 1: 1-7.
  • Müller RD, Seton M, Zahirovic S, Williams SE, Matthews KJ et al. (2016). Ocean basin evolution and global-scale plate reorganization events since pangea breakup. In Annual Review of Earth and Planetary Sciences 44: 107–138.
  • Müller RD, Zahirovic S, Williams SE, Cannon J, Seton M et al. (2019). A global plate model including lithospheric deformation along major rifts and orogens since the triassic. Tectonics 38: 1884– 1907.
  • Oriolo S, Schulz B, Geuna S, González PD, Otamendi JE. et al. (2021). Early Paleozoic accretionary orogens along the Western Gondwana margin. Geoscience Frontiers 12: 109–130.
  • Pall J, Zahirovic S, Doss S, Hassan R, Matthews KJ (2018). The influence of carbonate platform interactions with subduction zone volcanism on palaeo-atmospheric CO2 since the Devonian. Climate of the Past 14: 857-870.
  • Pall J, Zahirovic S, Doss S, Hassan R, Matthews KJ (2017). Arc volcanism, carbonate platform evolution and palaeo-atmospheric CO2: Components and interactions in the deep carbon cycle. Climate of the Past Discussions doi: 10.5194/cp-2017-112.
  • Park Y (2020). Planetary Cooling, Tectonics, and Weathering from 1 Billion Years Ago to the Present. Ph.D. Thesis. University of California, Berkeley.
  • Park Y, Swanson Hysell NL, Lisiecki LE, Macdonald FA (2021). Evaluating the relationship between the area and latitude of large igneous provinces and Earth’s long-term climate state. In: Ernst RE, Dickson AJ, Bekker A. Large igneous provinces: A driver of global environmental and biotic changes, Geophysical Monograph 255: 153-168.
  • Parnell-turner R, Sim S, Olive J-A (2020). Time-dependent crustal accretion on the southeast indian ridge revealed by Malaysia airlines flight MH370 search. Geophysical Research Letters 47: e2020GL08734.
  • Parsons AJ, Hosseini K, Palin RM, Sigloch K (2020). Geological, geophysical and plate kinematic constraints for models of the India-Asia collision and the post-Triassic central Tethys oceans. Earth-Science Reviews 208: 103084.
  • Pates S, Botting JP, McCobb LME, Muir LA (2020). A miniature Ordovician hurdiid from Wales demonstrates the adaptability of Radiodonta. Royal Society Open Science 7: 200459.
  • Peace AL, Welford JK (2019). “Conjugate margins”-an oversimplification of the complex southern north atlantic rift and spreading system? doi: 10.1190/INT-2019-0087.1
  • Pearce MA, Jarvis I, Ball PJ, Laurin J (2020). Palynology of the Cenomanian to lowermost Campanian (Upper Cretaceous) Chalk of the Trunch Borehole (Norfolk, UK) and a new dinoflagellate cyst bioevent stratigraphy for NW Europe. Review of Palaeobotany and Palynology 278: 104188.
  • Peters SE, Husson JM, Czaplewski J (2018). Macrostrat: a platform for geological data integration and deep-time Earth crust research. Geochemistry, Geophysics, Geosystems 19: 1393-1409.
  • Pindell J, Villagómez D, Molina-Garza R, Graham R, Weber B (2021). A revised synthesis of the rift and drift history of the gulf of mexico and surrounding regions in the light of improved age dating of the middle jurassic salt. In: Davison I, Hull JN F. Pindell J (eds) The Basins, Orogens and Evolution of the Southern Gulf of Mexico and Northern Caribbean Geological Society, Londin, Special Publications 504, pp. 29–76.
  • Pollett A, Hasterok D, Raimondo T, Halpin JA, Hand M et al. (2019). Heat Flow in Southern Australia and Connections With East Antarctica. Geochemistry, Geophysics, Geosystems 20: 5352– 5370.
  • Ratheesh-Kumar RT, Dharmapriya PL, Windley BF, Xiao WJ, Jeevan U (2020). The tectonic “Umbilical Cord” linking India and Sri Lanka, and the tale of their failed rift. Journal of Geophysical Research: Solid Earth 125:e2019JB018225.
  • Richter M, Nebel O, Maas R, Mather B, Nebel-Jacobsen Y (2020). An Early Cretaceous subduction-modified mantle underneath the ultraslow spreading Gakkel Ridge, Arctic Ocean. Science Advances 6: eabb4340.
  • Riefstahl F, Gohl K, Davy B, Hoernle K, Mortimer N et al. (2020). Cretaceous intracontinental rifting at the southern Chatham Rise margin and initialisation of seafloor spreading between Zealandia and Antarctica. Tectonophysics 776: 228298.
  • Rojas A, Calatayud J, Kowalewski M, Neuman M, Rosvall M (2021). A multiscale view of the Phanerozoic fossil record reveals the three major biotic transitions. Communications Biology 4: 309.
  • Salles T, Mallard C, Husson L, Zahirovic S, Sarr AC et al. (2021). Quaternary landscape dynamics boosted species dispersal across Southeast Asia. Communications Earth & Environment 2: 1-12.
  • Sandoval L, Welford JK, MacMahon H, Peace AL (2019). Determining continuous basins across conjugate margins: The East Orphan, Porcupine, and Galicia Interior basins of the southern North Atlantic Ocean. Marine and Petroleum Geology 110: 138–161.
  • Saylor JE, Sundell KE (2021). Tracking Proterozoic-Triassic sediment routing to western Laurentia via bivariate non-negative matrix factorization of detrital provenance data. Journal of the Geological Society 178: jgs2020-215.
  • Schaap TA., Meffre S, Whitakker JM, Cracknell MJ, Roach M (2019). Modelling the Palaeozoic tectonic evolution of the Lachlan Orogen. ASEG Extended Abstracts 1–5.
  • Schmidt WJ, Hoang BH, Handschy JW, Hai VT, Cuong TX et al. (2019). Tectonic evolution and regional setting of the Cuu Long Basin, Vietnam. Tectonophysics 757: 36–57.
  • Schoettle-Greene P, Duvall AR, Blythe A, Morley E, Matthews W et al. (2020). Uplift and exhumation in HaidaGwaii driven by terrane translation and transpression along the southern Queen Charlotte fault, Canada. Geology 48: 908–912.
  • Scotese CR. (2021). An Atlas of phanerozoic paleogeographic maps: the seas come in and the seas go out. The Annual Review of Earth and Planetary Sciences 49: 669–718.
  • Seton M, Müller RD, Zahirovic S, Gaina C, Torsvik T et al. (2012). Global continental and ocean basin reconstructions since 200Ma. Earth-Science Reviews 113: 212–270.
  • Setoyama E, Kanungo S (2020). Mesozoic biochronostratigraphy and paleoenvironment of the South Atlantic: A revised framework based on 20 DSDP and ODP deep-water sites. Journal of South American Earth Sciences 99: 102511.
  • Shaw R, Mukherjee S. (2022) The development of carbon capture and storage (CCS) in India: A critical review. Carbon Capture Science & Technology 2, 100036.
  • Shephard GE, Bunge HP, Schuberth BSA, Müller RD, Talsma AS et al. (2012). Testing absolute plate reference frames and the implications for the generation of geodynamic mantle heterogeneity structure. Earth and Planetary Science Letters 317–318: 204–217.
  • Shephard GE, Müller RD, Seton M (2013). The tectonic evolution of the Arctic since Pangea breakup: Integrating constraints from surface geology and geophysics with mantle structure. EarthScience Reviews 124: 148–183.
  • Siegesmund S, Oriolo S, Schulz B, Heinrichs T, Basei MAS, Lammerer B (2021). The birth of the Alps: Ediacaran to Paleozoic accretionary processes and crustal growth along the northern Gondwana margin. International Journal of Earth Sciences 110: 1321–1348.
  • Sluijs A, Frieling J, Inglis G, Nierop K, Peterse F et al. (2020). Late Paleocene – early Eocene Arctic Ocean Sea Surface Temperatures; reassessing biomarker paleothermometry at Lomonosov Ridge. Climate of the Past Discussions 16: 2381– 2400.
  • Solórzano A, Núñez-Flores M (2021). Evolutionary trends of body size and hypsodonty in notoungulates and their probable drivers. Palaeogeography, Palaeoclimatology, Palaeoecology 568: 110306.
  • Suárez R, González PD, Ghiglione MC (2019). A review on the tectonic evolution of the Paleozoic-Triassic basins from Patagonia: Record of protracted westward migration of the pre-Jurassic subduction zone. Journal of South American Earth Sciences 95: 102256.
  • Suenaga N, Yoshioka S, Ji Y (2021). 3-D thermal regime and dehydration processes around the regions of slow earthquakes along the Ryukyu Trench. Scientific Reports 11: 11251.
  • Swanson-Hysell NL (2021). The Precambrian paleogeography of Laurentia. In: Evans DAD, Johanna Salminen J, Pesonen LJ, Elming S-A, Veikkolainen T (eds) Ancient Supercontinents and the Paleogeography of Earth. pp. 109-153. Elsevier. ISBN: 9780128185339, 0128185333.
  • Szameitat LSA, Manatschal G, Nirrengarten M, Ferreira FJF, Heilbron M (2020). Magnetic characterization of the zigzag shaped J-anomaly: Implications for kinematics and breakup processes at the Iberia–Newfoundland margins. Terra Nova 32: 369–380. doi: 10.1111/ter.12466
  • Tetley MG (2018). Constraining Earth’s plate tectonic evolution through data mining and knowledge discovery. Ph.D. thesis. The University of Sydney.
  • Tetley MG, Williams SE, Gurnis M, Flament N, Müller RD (2019). Constraining Absolute Plate Motions Since the Triassic. Journal of Geophysical Research: Solid Earth 124: 7231– Tomasi S, Kusznir N, Manatschal G, Despinois F (2021). The challenge in restoring magma-rich rifted margins: The example of the Mozambique-Antarctica conjugate margins. Gondwana Research 95: 29–44.
  • Tomaselli, M.B.; Ortiz David, L.D.; González Riga, B.J. (2021) Paleoenvironmental contexts of South American Cretaceous sauropod tracks. Journal of South American Earth Sciences 110: 103393.
  • Tominaga K, Hara H (2021). Paleogeography of Late Jurassic large-igneous-province activity in the Paleo-Pacific Ocean: Constraints from the Mikabu greenstones and Chichibu accretionary complex, Kanto Mountains, Central Japan. Gondwana Research 89: 177–192.
  • Topper TP, Brock GA, Skovsted CB, Paterson JR (2010). Palaeoscolecid scleritome fragments with Hadimopanella plates from the early Cambrian of South Australia. Geologicla Magazine 147: 86-97.
  • Turco E, Macchiavelli C, Penza G, Schettino A, Pierantoni PP (2021). Kinematics of deformable blocks: application to the opening of the tyrrhenian basin and the formation of the apennine Chain. Geosciences 11: 177.
  • Turk E, Čandek K, Kralj-Fišer S, Kuntner M (2020). Biogeographical history of golden orbweavers: Chronology of a global conquest. Journal of Biogeography 47: 1333–1344.
  • Ulvrova MM, Coltice N, Williams S. Tackley PJ (2019). Where does subduction initiate and cease? A global scale perspective. Earth and Planetary Science Letters 528: 115836.
  • Utescher T, Erdei B, François L, Henrot AJ, Mosbrugger V et al. (2021). Oligocene vegetation of Europe and western Asia— Diversity change and continental patterns reflected by plant functional types. Geological Journal 56: 628–649.
  • van der Voo R, van Hinsbergen DJJ, Domeier M, Spakman W, Torsvik TH (2015). Latest Jurassic-earliest Cretaceous closure of the Mongol-Okhotsk Ocean: A paleomagnetic and seismologicaltomographic analysis. Special Paper of the Geological Society of America 513: 589–606.
  • van Hinsbergen DJJ, Kapp P, Dupont-Nivet G, Lippert PC, Decelles PG et al. (2011). Restoration of Cenozoic deformation in Asia and the size of Greater India. Tectonics 30: TC5003.
  • van Hinsbergen DJJ, Schmid SM (2012). Map view restoration of Aegean-West Anatolian accretion and extension since the Eocene. Tectonics 31. TC5005.
  • van Hinsbergen DJJ, Schouten TLA (2021). Deciphering paleogeography from orogenic architecture: constructing orogens in a future supercontinent as thought experiment. EarthArXiv. doi: 10.31223/X5M895
  • van Hinsbergen DJJ, Vissers RLM, Spakman W (2014). Origin and consequences of western Mediterranean subduction, rollback, and slab segmentation. Tectonics 33: 393–419.
  • Vormann M, Jokat W (2021). Crustal variability along the rifted/ sheared East African margin: a review. Geo-Marine Letters 41: 19.
  • Wang, J, Pei R, Chen J, Zhou Z, Feng C et al. (2019). New age constraints for the Middle Triassic archosaur Lotosaurus: Implications for basal archosaurian appearance and radiation in South China. Palaeogeography, Palaeoclimatology, Palaeoecology 521: 30–41.
  • Westerweel J, Roperch P, Licht A, Dupont-Nivet G, Win Z et al. (2019). Burma Terrane part of the Trans-Tethyan arc during collision with India according to palaeomagnetic data. Nature Geoscience 12: 863–868.
  • Whittaker JM, Williams SE, Müller RD (2013). Revised tectonic evolution of the Eastern Indian Ocean. Geochemistry, Geophysics, Geosystems 14: 1891–1909.
  • Williams SE, Müller RD, Landgrebe TCW, Whittaker JM (2012). An open-source software environment for visualizing and refining plate tectonic reconstructions using high-resolution geological and geophysical data sets. GSA Today 22: 4–9. doi: 10.1130/ GSATG139A.1
  • Williams SE, Whittaker JM, Müller RD (2011). Full-fit, palinspastic reconstruction of the conjugate Australian-Antarctic margins. Tectonics 30: TC6012.
  • Williams S, Wright NM, Cannon J, Flament N, Müller RD (2021). Reconstructing seafloor age distributions in lost ocean basins. Geoscience Frontiers 12: 769–780.
  • Wong K, Mason E, Brune S, East M, Edmonds M et al. (2019). Deep carbon cycling over the past 200 million years: a review of fluxes in different tectonic settings. Frontiers in Earth Science 7: 263.
  • Wu L, Murphy JB, Quesada C, Li ZX, Waldron JW, Williams S et al. (2021). The amalgamation of Pangea: Paleomagnetic and geological observations revisited. GSA Bulletin 133: 625-646.
  • Wu J, Suppe J, Lu R, Kanda R (2016). Philippine Sea and East Asian plate tectonics since 52 Ma constrained by new subducted slab reconstruction methods. Journal of Geophysical Research: Solid Earth 121: 4670–4741.
  • Xu W, Qiu N, Li Y (2019). Evolution of the Cenozoic thermal lithosphere of the Jiyang Sub-basin, Bohai Bay Basin: Implications for the lithospheric thinning mechanism. Tectonophysics 773: 228229.
  • Yang X, Smith G (2019). Gippsland Basin 3D forward modelling in Badlands. ASEG Extended Abstracts, pp.1-5.
  • Yang P, Welford JK (2021). Investigating the Porcupine Atlantic margin, offshore Ireland, through integration of new seismic reflection and gravity data. Tectonophysics 807: 228809.
  • Yang P, Welford JK, Peace AL, Hobbs R (2020). Investigating the Goban Spur rifted continental margin, offshore Ireland, through integration of new seismic reflection and potential field data. Tectonophysics 777: 228364.
  • Yoshida M, Saito S, Yoshizawa K (2020). Possible tectonic patterns along the eastern margin of Gondwanaland from numerical studies of mantle convection. Tectonophysics 787: 228476.
  • Young A, Flament N, Maloney K, Williams S, Matthews K et al. (2019). Global kinematics of tectonic plates and subduction zones since the late Paleozoic Era. Geoscience Frontiers 10: 989–1013.
  • Zacaï A, Monnet C, Pohl A, Beaugrand G, Mullins G et al. (2021). Truncated bimodal latitudinal diversity gradient in early Paleozoic phytoplankton. Science Advances 7: eabd6709.
  • Zahirovic S, Salles T, Müller D, Gurnis M, Cao W. et al. 2019. From Paleogeographic maps to Evolving Deep-time Digital Earth models. Acta Geologica Sinica 93: 73-75.
  • Zahirovic S, Matthews KJ, Flament N, Müller RD, Hill KC (2016). Tectonic evolution and deep mantle structure of the eastern Tethys since the latest Jurassic. Earth-Science Reviews 162: 293–337.
  • Zahirovic S, Seton M, Müller RD (2014). The Cretaceous and Cenozoic tectonic evolution of Southeast Asia. Solid Earth 5: 227–273.
  • Zhu Y, Liu S, Zhang B, Gurnis M, Ma P (2021). Reconstruction of the Cenozoic deformation of the Bohai Bay Basin, North China. Basin Research 33: 364–381.