Growth of the imbrication zone along the southeast Anatolian orogenic belt: evidence from fission track thermochronology from Gölbaşı region (SE Turkey)

Growth of the imbrication zone along the southeast Anatolian orogenic belt: evidence from fission track thermochronology from Gölbaşı region (SE Turkey)

One of the major components of continental collision zones is their imbricated zones. Such a zone along the Southeast Anatolian Orogenic Belt (SAOB) is solely controlled by a still-active convergence and accretion system between the Anatolian Plate and Arabian platform since at least Late Cretaceous. The zone is characterized by NEE/SWW-trending, northward-dipping thrust slices that are squeezed between the Tauride Block to the north and the Arabian platform to the south. The units cropping out within the zone comprise Neo-Tethysrelated magmatic, ophiolitic, sedimentary and metamorphic rocks with Late Cretaceous to Miocene formation/metamorphism ages. The Karanlıkdere granitoid intrudes into Late Cretaceous Meydan ophiolite, Helete volcanics, and Malatya metamorphics. These units thrust over Cenozoic volcanic and sedimentary rocks. Although various scenarios have been proposed for the late Cretaceous to Neogene evolution of the complex region, quantitative data aiming to understand the growth mechanism of the imbrication zone in the region are limited. The zircon U-Pb and the apatite fission track (AFT) thermochronology were applied to the Karanlıkdere granitoid within the imbrication zone of the Southeast Anatolian Orogenic Belt (SAOB). The LA-ICP-MS zircon U-Pb age yields 79.67 ± 0.24 Ma with 0.23–0.65 Th/U ratios. This age is slightly younger than the previously published ages, indicating that the main body of the Karanlıkdere granitoid formed 3-4 Ma later than the small dikes intruded into other units. The AFT ages are directly controlled by altitude and range between 40.38 ± 3.4 Ma and 22.81 ± 0.63 Ma. The oldest AFT age has the highest altitude, whereas the youngest has the lowest height. The age-temperature models show a slow uplift rate between 40 Ma and 22 Ma. The results indicate that the growth of the imbrication zone in front of the Nappes of the SAOB continued in a steady-state mode with a slow uplift rate of 0.02 ± 0.005 mm/a, during middle-late Eocene to early Miocene and increasing uplift rate during early-middle Miocene, which might be explained by continental collision during early-middle Miocene. Key words: Southeast Anatolian Orogenic Belt, imbrication zone, Karanlıkdere granitoid, apatite fission track, uplift, Gölbaşı

___

  • Açlan M, Altun Y (2018). Syn-collisional I-type Esenköy Pluton (Eastern Anatolia-Turkey): An indication for collision between Arabian and Eurasian plates. Journal of African Earth Sciences 142: 1-11.
  • Açlan M, Duruk Hİ (2018). Geochemistry, zircon U-Pb geochronology, and tectonic setting of the Taşlıçay Granitoids, Eastern Anatolia, Turkey. Arabian Journal of Geosciences 11: 336.
  • Akıncı AC, Robertson AHF, Ünlügenç UC (2016). Late Cretaceous– Cenozoic subduction–collision history of the Southern Neotethys: new evidence from the Çağlayancerit area, SE Turkey. International Journal Earth Science 105: 315-337.
  • Albino I, Cavazza W, Zattin M, Okay AI, Adamia S et al. (2013). Far-field tectonic effects of the Arabia–Eurasia collision and the inception of the North Anatolian Fault system. Geological Magazine 151: 372-379.
  • Albino I, Cavazza W, Zattin M, Okay AI, Adamia S et al. N (2014). Far-field tectonic effects of the Arabia-Eurasia collision and the inception of the North Anatolian Fault system. Geological Magazine 151: 372-379.
  • Allen MB, Armstrong HA (2008). Arabia-Eurasia collision and the forcing of mid-Cenozoic global cooling. Palaeogeography, Palaeoclimatology, Palaeoecology 265: 52-58.
  • Ballato P, Parra M, Schildgen TF, Dunkl I, Yıldırım C et al. (2018). Multiple Exhumation Phases in the Central Pontides (N Turkey): New Temporal Constraints on Major Geodynamic Changes Associated With the Closure of the Neo-Tethys Ocean. Tectonics 37: 1831-1857.
  • Bilgiç T, (2002). 1:500000 ölçekli Sivas paftası Jeoloji Haritası No:10, in: Şenel, M (Ed.). MTA, Ankara, Türkiye.
  • Bozkurt E, Mittwede SK (2001). Introduction to the Geology of Turkey—A Synthesis. International Geology Review 43: 578- 594.
  • Cavazza W, Cattò S, Zattin M, Okay AI, Reiners P (2018). Thermochronology of the Miocene Arabia-Eurasia collision zone of southeastern Turkey. Geosphere 14: 2277-2293.
  • Darin MH, Umhoefer PJ, Thomson SN (2018). Rapid Late Eocene Exhumation of the Sivas Basin (Central Anatolia) Driven by Initial Arabia-Eurasia Collision. Tectonics 37: 3805-3833.
  • Donelick RA, Ketcham RA, Carlson WD (1999). Variability of apatite fission-track annealing kinetics: II. Crystallographic orientation effects. American Mineralogist 84: 1224-1234.
  • Duman TY, Robertson AHF, Elmacı H, Kara M (2017). PalaeozoicRecent geological development and uplift of the Amanos Mountains (S Turkey) in the critically located northwesternmost corner of the Arabian continent. Geodinamica Acta 29: 103-138.
  • Erdoğan T (1975). Gölbaşı civarının jeolojisi: TPAO Arama Grubu, Rapor no.929, 17s., Ankara.
  • Galbraith RF, Laslett GM (1993). Statistical-Models for Mixed FissionTrack Ages. Nuclear Tracks and Radiation Measurements 21: 459-470.
  • Gleadow AJW, Duddy IR, Green PF, Lovering JF (1986). Confined fission track lengths in apatite: a diagnostic tool for thermal history analysis. Contributions to Mineralogy and Petrology 94: 405-415.
  • Göncüoğlu C, Turhan N (1984). Geology of the Bitlis Metamorphic Belt, In: Tekeli, O, Göncüoğlu, MC editors. Geology of The Taurus Belt. Mineral Research and Expolaration Instutute of Turkey (MTA), Ankara, pp. 237-244.
  • Göncüoğlu MC (2019). A Review of the Geology and Geodynamic Evolution of Tectonic Terranes in Turkey, In: Pirajno, F, Ünlü, T, Dönmez, C, Şahin, MB editors. Mineral Resources of Turkey. Springer International Publishing, Cham, pp. 19-72.
  • Görür N, Oktay FY, Seymen İ, Şengör AMC (1984). Palaeotectonic evolution of the Tuzgölü basin complex, Central Turkey: sedimentary record of a Neo-Tethyan closure, In: DIXON, JE, ROBERTSON, AHF editors. The Geological Evolution of the Eastern Mediterranean. Geological Society Special Publications, London, pp. 467-482.
  • Görür N, Tüysüz O, Celal Şengör AM (1998). Tectonic Evolution of the Central Anatolian Basins. International Geology Review 40: 831-850.
  • Gulyuz E (2020). Apatite fission track dating of the Beypazari Granitoid: insight for the inception of collision along the Northern Neotethys, Turkey. Geodinamica Acta 32: 1-10.
  • Gülyüz E, Durak H, Özkaptan M, Krijgsman W (2020). Paleomagnetic constraints on the early Miocene closure of the southern NeoTethys (Van region; East Anatolia): Inferences for the timing of Eurasia-Arabia collision. Global and Planetary Change 185: 103089.
  • Gülyüz E, Özkaptan M, Kaymakci N, Persano C, Stuart FM (2019). Kinematic and thermal evolution of the Haymana Basin, a fore-arc to foreland basin in Central Anatolia (Turkey). Tectonophysics.
  • Günay Y, Şenel M, (2002). Turkey Geological Map, Sheet Cizre: Ankara, Turkey: Maden Tetkik ve Arama Genel Müdürlüğü, scale 1:500,000.
  • Hall R (1976). Ophiolite emplacement and the evolution of the Taurus suture zone, southeastern Turkey. Geological Society of America Bulletin 87: 1078-1088.
  • Hasebe N, Barbarand J, Jarvis K, Carter A, Hurford AJ (2004). Apatite fission-track chronometry using laser ablation ICP-MS. Chemical Geology 207: 135-145.
  • Herece E, (2008). Doğu Anadolu Fayı (DAF) Atlası. General Directorate of Mineral Research and Exploration (MTA), Ankara, Türkiye.
  • Hinsbergen DJJ, Maffione M, Plunder A, Kaymakcı N, Ganerød M et al. (2016). Tectonic evolution and paleogeography of the Kırşehir Block and the Central Anatolian Ophiolites, Turkey. Tectonics 35: 983-1014.
  • Hozatlıoğlu D, Bozkaya Ö, Yalçın H, Yılmaz H (2019). Göksun, Afşin Ve Ekinözü (Kahramanmaraş) Bölgesinde Yüzeylenen Metamorfik Masiflerin Mineralojik Karakteristikleri. Bulletin of The Mineral Research and Exploration: 1-10.
  • Jackson SE, Pearson NJ, Griffin WL, Belousova EA (2004). The application of laser ablation-inductively coupled plasma-mass spectrometry to in situ U–Pb zircon geochronology. Chemical Geology 211: 47-69.
  • Karaoğlan F, Parlak O, Hejl E, Neubauer F, Klötzli U (2016). The temporal evolution of the active margin along the Southeast Anatolian Orogenic Belt (SE Turkey): Evidence from U–Pb, Ar–Ar and fission track chronology. Gondwana Research 33: 190-208.
  • Karaoğlan F, Parlak O, Robertson A, Thöni M, Klötzli U et al. (2013). Evidence of Eocene high-temperature/high-pressure metamorphism of ophiolitic rocks and granitoid intrusion related to Neotethyan subduction processes (Doğanşehir area, SE Anatolia), In: Robertson, AHF, Parlak, O, Ünlügenç, UC editors. Geological Development of Anatolia and the Easternmost Mediterranean Region. Geological Society, London, Special Publications, London, pp. 249-272.
  • Karaoğlan F, Yıldırım N, Yıldırım E, Topak Y (2021). The Geology of Gölbaşı (Adıyaman) Region: The Upper Cretaceous -Eocene Evolution of the Southeast Anatolian Orogenic Belt. 73th Geological Congress of Turkey, pp. 453-454.
  • Keskin M (2003). Magma generation by slab steepening and breakoff beneath a subduction-accretion complex: An alternative model for collision-related volcanism in Eastern Anatolia, Turkey. Geophysical Research Letters 30: n/a-n/a.
  • Ketcham RA (2005). Forward and Inverse Modeling of LowTemperature Thermochronometry Data, In: Reiners, PW, Ehlers, TA editors. Low-Temperature Thermochronology: Techniques, Interpretations, and Applications. Mineralogical Society of America, pp. 275-314.
  • Ketcham RA, Donelick RA, Carlson WD (1999). Variability of apatite fission-track annealing kinetics: III. Extrapolation to geological time scales. American Mineralogist 84: 1235-1255.
  • Lefebvre C, Thomson SN, Reiners PW, Whitney DL, Teyssier C (2015). Thermochronologic evaluation of the Arabia-Anatolia collision: new results from Apatite (U-Th) He and Fission Track. EGU2015, pp. EGU2015-7623.
  • Nurlu N, Parlak O, Robertson A, von Quadt A (2016). Implications of Late Cretaceous U-Pb zircon ages of granitic intrusions cutting ophiolitic and volcanogenic rocks for the assembly of the Tauride allochthon in SE Anatolia (Helete area, KahramanmaraAY Region, SE Turkey). International Journal of Earth Sciences 105: 283-314.
  • Oberhänsli R, Bousquet R, Candan O, Okay A (2012). Dating Subduction Events in East Anatolia, Turkey. Turkish Journal of Earth Sciences 21: 1-17.
  • Oberhänsli R, Candan O, Bousquet R, Rimmele G, Okay A et al. (2010). Alpine high pressure evolution of the eastern Bitlis complex, SE Turkey, In: Sosson, M, Kaymakci, N, Stephenson, RA, Bergerat, F, Starostenko, V editors. Sedimentary Basin Tectonics from the Black Sea and Caucasus to the Arabian Platform. Geological Society, London, Special Publications, London, pp. 461-483.
  • Oberhänsli R, Koralay E, Candan O, Pourteau A, Bousquet R (2014). Late Cretaceous eclogitic high-pressure relics in the Bitlis Massif. Geodinamica Acta 26: 175-190.
  • Okay AI, Tüysüz O (1999). Tethyan sutures of northern Turkey, In: Durand, B, Jolivet, FL, Horváth, F editors. The Mediterranean Basins: Tertiary Extension within the Alpine Orogen. Geological Society, London, Special Publications, pp. 475-515.
  • Okay AI, Zattin M, Cavazza W (2010). Apatite fission-track data for the Miocene Arabia-Eurasia collision. Geology 38: 35-38.
  • Oyan V (2018). Ar-Ar dating and petrogenesis of the Early Miocene Taskapi-Mecitli (Ercis-Van) granitoid, Eastern Anatolia Collisional Zone, Turkey. Journal of Asian Earth Sciences 158: 210-226.
  • Paton C, Hellstrom J, Paul B, Woodhead J, Hergt J (2011). Iolite: Freeware for the visualisation and processing of mass spectrometric data. Journal of Analytical Atomic Spectrometry 26: 2508-2518.
  • Perinçek D, Kozlu H (1984). Stratigraphy and structural relations of the units in the Afşin-Elbistan-Doganşehir region (Eastern Taurus), In: Tekeli, O, Göncüoğlu, MC editors. Geology Of The Taurus Belt. Mineral Research and Expolaration Instutute of Turkey (MTA), Ankara, pp. 181-198.
  • Robertson A, Parlak O, Ustaömer T, Tasli K, Dumitrica P (2021). Late Palaeozoic-Neogene sedimentary and tectonic development of the Tauride continent and adjacent Tethyan ocean basins in eastern Turkey: New data and integrated interpretation. Journal of Asian Earth Science. doi: 10.1016/j.jseaes.2021.104859
  • Robertson A, Boulton SJ, Taslı K, Yıldırım N, İnan N et al. (2016). Late Cretaceous–Miocene sedimentary development of the Arabian continental margin in SE Turkey (Adıyaman region): Implications for regional palaeogeography and the closure history of Southern Neotethys. Journal of Asian Earth Sciences 115: 571-616.
  • Robertson AHF, Parlak O, Ustaomer T (2012). Overview of the Palaeozoic-neogene evolution of neotethys in the Eastern Mediterranean region (Southern Turkey, Cyprus, Syria). Petroleum Geoscience 18: 381-404.
  • Robertson AHF, Ustaömer T, Parlak O, Ünlügenç UC, Taslı K et al. (2006). The Berit transect of the Tauride thrust belt, S Turkey: Late Cretaceous-Early Cenozoic accretionary/collisional processes related to closure of the Southern Neotethys. Journal of Asian Earth Sciences 27: 108-145.
  • Sar A, Ertürk MA, Rizeli ME (2019). Genesis of Late Cretaceous intra-oceanic arc intrusions in the Pertek area of Tunceli Province, eastern Turkey, and implications for the geodynamic evolution of the southern Neo-Tethys: Results of zircon U–Pb geochronology and geochemical and Sr–Nd isotopic analyses. Lithos 350-351: 105263.
  • Schildgen TF, Yildirim C, Cosentino D, Strecker MR (2014). Linking slab break-off, Hellenic trench retreat, and uplift of the Central and Eastern Anatolian plateaus. Earth-Science Reviews 128: 147-168.
  • Şenel M, Ercan T, (2002). Turkey Geological Map, Sheet Van: Ankara, Turkey, Maden Tetkik ve Arama Genel Müdürlüğü, scale 1:500,000. Maden Tetkik ve Arama Genel Müdürlüğü, Ankara. Şengör AMC, Yılmaz Y (1981). Tethyan Evolution of Turkey-a Plate Tectonic Approach. Tectonophysics 75: 181-241.
  • Slama J, Kosler J, Condon DJ, Crowley JL, Gerdes A et al. (2008). Plesovice zircon-A new natural reference material for U-Pb and Hf isotopic microanalysis. Chemical Geology 249: 1-35.
  • Tarhan N, (2002). 1:500000 Ölçekli Erzurum Paftası Jeoloji Haritası. No:11, in: Şenel, M (Ed.). MTA, Ankara, Türkiye.
  • Topuz G, Candan O, Zack T, Chen F, Li Q-L (2019). Origin and significance of Early Miocene high-potassium I-type granite plutonism in the East Anatolian plateau (the Taşlıçay intrusion). Lithos: 105210.
  • Ulu U, (2002). 1:500000 Ölçekli Hatay Paftası Jeoloji Haritası. No: 16, in: Şenel, M (Ed.). MTA, Ankara, Türkiye.
  • Ural M, Arslan M, Göncüoglu MC, Tekin KU, Kürüm S (2015). Late Cretaceous arc and back-arc formation within the Southern Neotethys: whole-rock, trace element and Sr-Nd-Pb isotopic data from basaltic rocks of the Yüksekova Complex (MalatyaElazığ, SE Turkey). Ofioliti 40.
  • Vermeesch P (2017). Statistics for LA-ICP-MS based fission track dating. Chemical Geology 456: 19-27.
  • Vermeesch P (2018). IsoplotR: A free and open toolbox for geochronology. Geoscience Frontiers 9: 1479-1493.
  • Wiedenbeck M, Hanchar JM, Peck WH, Sylvester P, Valley J et al. (2004). Further characterisation of the 91500 zircon crystal. Geostandards and Geoanalytical Research 28: 9-39.
  • Yiğitbaş E, Yılmaz Y (1996a). Post-Late Cretaceous Strike-Slip Tectonics and Its Implications for the Southeast Anatolian Orogen, Turkey. International Geology Review 38: 818-831.
  • Yiğitbaş E, Yılmaz Y (1996b). New evidence and solution to the Maden complex controversy of the Southeast Anatolian orogenic belt (Turkey). Geologische Rundschau 85: 250-263.
  • Yıldırım E (2015). Geochemistry, petrography and tectonic significance of the ophiolitic rocks, felsic intrusions and Eocene volcanic rocks of an imbrication zone (Helete area, Southeast Turkey). Journal of African Earth Sciences 107: 89-107.
  • Yıldırım M, Yılmaz Y (1991). Güneydoğu Anadolu orojenik kuşağının ekaylı zonu [Imbrication zone of Southeastern Anatolian Orogenic Belt]. Türkiye Petrol Jeologları Derneği Bülteni, 3: 57-73.
  • Yılmaz Y (1993). New Evidence and Model on the Evolution of the Southeast Anatolian Orogen. Geological Society of America Bulletin 105: 251-271.
  • Yılmaz Y (2019). Southeast Anatolian Orogenic Belt revisited (geology and evolution). Canadian Journal of Earth Sciences 56: 1163-1180.
  • Yılmaz Y, Gürer ÖF (1996). Andırım (Kahramanmaraş) Dolayında Misis-Andırın Kuşağının Jeolojisi ve Evrimi. Turkish Journal of Earth Sciences 5: 39-55.
  • Yılmaz Y, Yiğitbaş E, Genç ŞC (1993). Ophiolitic and Metamorphic Assemblages of Southeast Anatolia and Their Significance in the Geological Evolution of the Orogenic Belt. Tectonics 12: 1280-1297.
  • Yılmaz Y, Yiğitbaş E, Yıldırım M, Genç ŞC (1992). Güneydoğu Anadolu Metamorfik Masiflerinin Kökeni. Türkiye 9. Petrol kongresi.