Mineralogy, geochemistry, and depositional environment of the Beduh Shale(Lower Triassic), Northern Thrust Zone, Iraq

Mineralogy, geochemistry, and depositional environment of the Beduh Shale(Lower Triassic), Northern Thrust Zone, Iraq

Integrated mineralogical and geochemical methods are utilized to investigate the provenance, paleoweathering, and depositional setting of shale from the Lower Triassic Beduh Formation in the Northern Thrust Zone, Iraq. The ~64-m-thick Beduh Formation consists of calcareous shale and marl intercalations with thin calcareous sandstone interbeds. X-ray diffraction analysis revealed that clay minerals comprise illite, kaolinite, and chlorite, with a minor mixed layer of illite/smectite and illite/chlorite. Calcite and quartz are the main nonclay species with subordinate amounts of feldspar and hematite. The mineralogical and geochemical parameters of the shale (e.g., high content of illite and moderate illite crystallinity index, Al2O3/TiO2, Th/Co, Cr/Th, and LREE/HREE ratios) indicate that they were derived from felsic and intermediate components. This is supported by the enrichment of LREEs, negative Eu anomaly, and depletion of HREEs. The discriminant function-based major element diagrams indicated that the origin of sediments was probably from passive (the Arabian Shield and the Rutba Uplift) and active (volcanic activity) tectonic environments. The source of sediments for the Beduh Formation was likely the Rutba Uplift and/or the plutonic-metamorphic complexes of the Arabian Shield located to the southwest of the basin. Paleoweathering indices such as the chemical index of alteration and chemical index of weathering, as well as the A-CN-K (Al2O3-CaO+Na2O-K2O) diagram of the shale of the Beduh Formation suggest thatthe source terrain was moderately to intensely chemically weathered. The Cu/Zn, U/Th, Ni/Co, and V/Cr ratios and negative Eu anomaly indicate the deposition of sediments under an oxygen-rich environment.

___

  • Absar N, Raza M, Roy M, Naqvi SM, Roy AK (2009). Composition and weathering conditions of Paleoproterozoic upper crust of Bundelkhand craton, Central India: records from geochemistry of clastic sediments of 1.9 Ga Gwalior Group. Precamb Res 168: 313-329.
  • Absar N, Sreenivas B (2015). Petrology and geochemistry of greywackes of the ~1.6 Ga Middle Aravalli Supergroup, northwest India: evidence for active margin processes. Int Geol Rev57: 134-158.
  • Akinyemi SA, Adebayo OF, Ojo OA, Fadipe OA, Gitari WM (2013). Mineralogy and geochemical appraisal of Paleo-redox indicators in Maastrichtian outcrop shales of Mamu Formation, Anambra Basin, Nigeria. J Natur Sci Res 3: 48-64.
  • Al-Brifkani MJN (2008). Structural and tectonic analysis of the Northern Thrust Zone (East Khabour River) in Iraq. PhD, University of Mosul, Mosul, Iraq (in Arabic).
  • Armstrong-Altrin JS (2015). Evaluation of two multidimensional discrimination diagrams from beach and deep-sea sediments from the Gulf of Mexico and their application to Precambrian clastic sedimentary rocks. Int Geol Rev 57: 1446-1461.
  • Armstrong-Altrin JS, Lee YI, Verma SP, Ramasamy S (2004). Geochemistry of sandstones from the upper Miocene Kudankulam Formation, southern India: implications for provenance, weathering, and tectonic setting. J Sed Res 74: 285-297.
  • Armstrong-Altrin JS, Machain-Castillo ML, Rosales-Hoz L, Carranza-Edwards A, Sanchez-Cabeza J, Ruíz-Fernández AC (2015a). Provenance and depositional history of continental slope sediments in the Southwestern Gulf of Mexico unraveled by geochemical analysis. Continental Shelf Res 95: 15-26.
  • Armstrong-Altrin JS, Nagarajan R, Balaram V, Natalhy-Pineda O (2015b). Petrography and geochemistry of sands from the Chachalacas and Veracruz beach areas, western Gulf of Mexico, Mexico: constraints on provenance and tectonic setting. J South Amer Earth Sci 64: 199-216.
  • Armstrong-Altrin JS, Verma SP (2005). Critical evaluation of six tectonic setting discrimination diagrams using geochemical data of Neogene sediments from known tectonic setting. Sediment Geol 177: 115-129.
  • Bellen RC, Dunnington HV, Wetzel R, Morton D (1959). Lexique Stratigraphique Internal Asie. Iraq. International Geological Congress. Fasc. 10a. Paris, France: Commission on Stratigraphy (in French).
  • Bhat MI, Ghosh SK (2001). Geochemistry of the 2.51 Ga old Rampur group pelites, western Himalayas: implications for their provenance and weathering. Precamb Res 108: 1-16.
  • Bhatia MR (1983). Plate tectonics and geochemical composition of sandstones. J Geol 91: 611-627.
  • Bhatia MR, Crook KAW (1986). Trace element characteristics of greywackes and tectonic setting discrimination of sedimentary basins. Contrib Mineral Petrol 92: 181-193.
  • Buday T (1980). The Regional Geology of Iraq, Stratigraphy and Paleontology. Mosul, Iraq: Dar Al-Kutb Publishing House.
  • Carroll D (1970).Clay Minerals: A Guide to their X-Ray Identification. Boulder, CO, USA: Geological Society of America.
  • Condie KC (1991). Another look at rare earth elements in shales. Geochim Cosmochim Ac 55: 2527-2531.
  • Cullers RL (1994). The controls on major and trace element variation of shales, siltstones, and sandstones of Pennsylvanian-Permian age from uplifted continental blocks in Colorado to platform sediment in Kansas, USA. Geochim Cosmochim Ac 58: 4955-4972.
  • Cullers RL (2000). The geochemistry of shales, siltstones, and sandstones of Pennsylvanian-Permian age, Colorado, USA: implication for provenance and metamorphic studies. Lithos 51: 181-203.
  • Cullers RL, Graf J (1983). Rare earth elements in igneous rocks of the continental crust: intermediate and silicic rocks, ore petrogenesis. In: Henderson P, editor. Rare-Earth Geochemistry. Amsterdam, the Netherlands: Elsevier, pp. 275-312.
  • Dostal J, Keppie JD (2009). Geochemistry of low-grade clastic rocks in the Acatlán Complex of southern Mexico: evidence for local provenance in felsic-intermediate igneous rocks. Sediment Geol 222: 241-253.
  • Dunoyer de Segonzac D (1969). Les mineraux argileux dans la diagenese passage au metamorphisme. Memoires du Service de la Carte Geologique de Lorraine 29. Paris, France: Centre National de la Recherche Scientifique (in French).
  • Etemad-Saeed N, Hosseini-Barzi M, Armstrong-Altrin JS (2011). Petrography and geochemistry of clastic sedimentary rocks as evidences for provenance of the Lower Cambrian Lalun Formation, Posht-e-badam block, Central Iran. J Afr Earth Sci 61: 142-159.
  • Fedo CM, Eriksson K, Krogstad EJ (1996). Geochemistry of shale from the Archean (~3.0 Ga) Buhwa Greenstone belt, Zimbabwe: implications for provenance and source area weathering. Geochim Cosmochim Ac 60: 1751-1763.
  • Fedo CM, Nesbitt HW, Young GM (1995). Unraveling the effects of potassium metasomatism in sedimentary rocks and paleosols, with implications for paleoweathering conditions and provenance. Geology23: 921-924.
  • Feng R, Kerrich R (1990). Geochemistry of fine grained clastic sediments in the Archean Abitib greenstones belt, Canada: implications for provenance and tectonic setting. Geochim Cosmochim Ac 54: 1061-1081.
  • Floyd PA, Franke W, Shail R, Dorr W (1990). Provenance and depositional environment of Rhenohercynian synorgenic greywacke from the Giessen nappe, Germany. Geologische Rundschau 79: 611-626.
  • Floyd PA, Leveridge BE (1987). Tectonic environment of the Devonian Gramscatho basin, south Cornwall: framework mode and geochemical evidence from turbiditic sandstones. J Geol Soci London 144: 531-542.
  • Floyd PA, Winchester JA, Park RG (1989). Geochemistry and tectonic setting discrimination using immobile elements. Earth Planet Sci Lett 27: 211-218.
  • Friedman G, Johnson KG (1982). Exercises in Sedimentology. New York, NY, USA: John Wiley and Sons.
  • Garver JI, Royce PR, Smick TA (1996). Chromium and nickel in shale of the Taconic Foreland: a case study for the provenance of fine-grained sediments with an ultramafic source. J Sediment Res 66: 100-106.
  • Gebreyohannes GW (2014). Geology, geochemistry and geochronology of Neoproterozoic rocks in western Shire, Northern Ethiopia. MSc, University of Oslo, Oslo, Norway.
  • Girty GH, Ridge DL, Knaack C, Johnson D, Riyami RK (1996). Provenance and depositional setting of Paleozoic chert and argillite, Sierra Nevada, California. J Sediment Res 66:107-118.
  • Grim RE (1968). Clay Mineralogy. 2nd ed. New York, NY, USA: McGraw-Hill.
  • Hakeem FA (2012). Sedimentology and suitability for some ceramic industries of Beduh Formation (Lower Triassic), Norther Thrust Zone, Kurdistan Region. PhD, Salahaddin University, Erbil, Iraq.
  • Hallberg RO (1976). A geochemical method for investigation of paleoredox conditions in sediments. Ambio Special Report 4: 139-147. Harnois L (1988). The CIW index: a new chemical index of weathering. Sediment Geol 55: 319-322.
  • Hayashi K, Fujisawa H, Holland HD, Ohmoto H (1997). Geochemistry of ~1.9 Ga sedimentary rocks from northeastern Labrador, Canada. Geochim Cosmochim Ac 61: 4115-4137.
  • Hemming SR, McLennan SM, Hanson GN (1995). Geochemical and Nd/Pb isotopic evidence for the provenance of the Early Proterozoic Virginia Formation, Minnesota: implication for the tectonic setting of the Animikie basin. J Geol 103: 147-168.
  • Hofer G, Wagreich M, Neuhuber S (2013). Geochemistry of fine grained sediments of the Upper Cretaceous to Paleogene Gosau Group (Austria, Slovakia): implications for paleoenvironmental and provenance studies. Geosci Front 4: 449-468.
  • Hu J, Li Q, Li J, Huang J, Ge D (2015). Geochemical characteristics and depositional environment of the Middle Permian mudstones from central Qiangtang Basin, northern Tibet. Geol J (in press).
  • Jahn BM, Condie KC (1995). Evolution of the Kaapvaal Craton as viewed from geochemical and Sm-Nd isotopic analyses of intracratonic pelites. Geochim Cosmochim Ac 59: 2239-2258.
  • Jassim SZ, Buday T, Cicha I (2006). Tectonic framework. In: Jassim SZ, Goff JC, editors. Geology of Iraq. Prague, Czech Republic: Dolin, pp. 45-56.
  • Jassim SZ, Goff JC (2006). Phanerozoic development of the Northern Arabian Plate. In: Jassim SZ, Goff JC, editors. Geology of Iraq. Prague, Czech Republic: Dolin, pp. 15-34.
  • Jones B, Manning DAC (1994). Comparison of geochemical indices used for the interpretation of paleoredox conditions in ancient mudstones. Chem Geol 111: 111-129.
  • Kübler B (1967). La cristallinité de l’illite et les zones tout à fait supérieures du métamorphisme. In: Etage Techniques, Colloque de Neuchatel. Neuchâtel, Switzerland: Baconniere, pp. 105-121 (in French).
  • Madhavaraju J, Ramasamy S (1999). Rare earth elements in limestones of Kallankurich-chi Formation of Ariyalur Group, Tiruchirapalli Cretaceous, Tamil Nadu. J Geol Soc India 54: 291-301.
  • McKirdy DM, Hall PA, Nedin C, Halverson GP, Michaelsen BH, Jago JB, Gehling JG, Jenkins RJF (2011). Paleoredox status and thermal alteration of the lower Cambrian (Series 2) Emu Bay Shale Lagerstätte, South Australia. Australian J Earth Sci 58: 259-272.
  • McLennan SM (1989). Rare earth elements in sedimentary rocks: Influence of provenance and sedimentary processes. In: Lipin BR, McKay GA, editors. Geochemistry and Mineralogy of Rare Earth Elements. Rev Mineral 21: 169-200.
  • McLennan SM, Fryer BJ, Young GM (1979). The geochemistry of the carbonate rich Espanola Formation (Huronian) with emphasis on the rare earth elements. Can J Earth Sci 16: 230-239.
  • McLennan S, Hemming S, McDaniel D, Hanson G (1993). Geochemical approaches to sedimentation, provenance, and tectonics. Geol Soc Am Spec Pap 284: 21-40.
  • McLennan SM, Taylor SR (1991). Sedimentary rocks and crustal evolution: tectonic setting and secular trends. J Geol 99: 1-21.
  • McLennan SM, Taylor SR, Mcculloch MT, Maynard JB (1990). Geochemical and Nd-Sr isotopic composition of deep-sea turbidites: crustal evolution and plate tectonic associations. Geochim Cosmochim Ac 54: 2015-2050.
  • Millot G (1964). Geologie des Argiles. Paris, France: Masson et Compagnie (in French).Moosavirad SM, Janardhana MR, Sethumadhav MS, Moghadam MR, Shankara M (2011). Geochemistry of lower Jurassic shales of the Shemshak Formation, Kerman Province, Central Iran: provenance, source weathering and tectonic setting. Chemie der Erde 71: 279-288.
  • Mortazavi M, Moussavi-Harami R, Mahboubi A, Nadjafi M (2014). Geochemistry of the Late Jurassic–Early Cretaceous shales (Shurijeh Formation) in the intracontinental Kopet-Dagh Basin, northeastern Iran: implication for provenance, source weathering, and paleoenvironments. Arab J Geosci 7: 5353-5366.
  • Nagarajan R, Armstrong-Altrin JS, Kessler FL, Hidalgo-Moral El, Dodge-Wan D, Taib NI (2015). Provenance and tectonic setting of Miocene siliclastic sediments, Sibuti Formation, northwestern Borneo. Arab J Geosci 8: 8549-8565.
  • Nagarajan R, Madhavaraju J, Nagendra R, Armstrong-Altrin JS, Moutte J (2011). Geochemistry of Neoproterozoic shales of the Rabanpalli Formation Bhima Basin, Northern Karnataka, southern India: implications for provenance and paleoredox conditions. Rev Mex Cien Geol 24: 20-30.
  • Nath BN, Bau M, Ramalingeswara Rao B, Rao CM (1997). Trace and rare earth elemental variation in Arabian Sea sediments through a transect across the oxygen minimum zone. Geochim Cosmochim Ac 61: 2375-2388.
  • Nemecz E (1981). Clay Minerals. Budapest, Hungary: Akadémiai Kiadó. Nesbitt HW, Fedo CM, Young GM (1997). Quartz and feldspar stability, steady and non-steady state weathering and petrogenesis of siliciclastic sands and muds. J Geol 105: 173-191.
  • Nesbitt HW, Young GM (1982). Early Proterozoic climates and plate motions inferred from major element chemistry of lutites. Nature 299: 715-717.
  • Nesbitt HW, Young GM (1984). Prediction of some weathering trends of plutonic and volcanic rocks based upon thermodynamic and kinetic consideration. Geochim Cosmochim Ac 48: 1523-1534.
  • Nesbitt HW, Young GM (1996). Petrogenesis of sediments in the absence of chemical weathering: effects of abrasion and sorting on bulk composition and mineralogy. Sediment 43: 341-358.
  • Numan NMS (1997). A plate tectonic scenario for the Phanerozoic succession in Iraq. Iraqi Geol Jour 30: 1-28.
  • Oliveira A, Rocha F, Rodrigues A, Jouanneau JM, Dias A, Weber O, Gomes C (2002). Clay minerals from the sedimentary cover from Northwest Iberian Shelf. Prog Ocean 52: 233-247.
  • Rimmer SM (2004). Geochemical paleoredox indicators in Devonian-Mississippian black shales, Central Appalachian Basin (USA). Chem Geol 206: 373-391.
  • Roser BP, Korsch RJ (1986). Determination of tectonic setting of sandstone-mudstone suites using SiO2 content and K2O/Na2O ratio. J Geol 94: 635-650.
  • Roser BP, Korsch RJ (1988). Provenance signatures of sandstone mudstone suites determined using discriminant function analysis of major-element data. Chem Geol 67: 119-139.
  • Ryan KM, Williams DM (2007). Testing the reliability of discrimination diagrams for determining the tectonic depositional environment of ancient sedimentary basins. Chem Geol 242: 103-25.
  • Sari A, Koca D (2012). An approach to provenance, tectonic and redox conditions of Jurassic-Cretaceous Akkuyu Formation, Central Taurids, Turkey. Mineral Res Explor Bull 144: 51-74.
  • Schreiber UM, Eriksson PG, Van der Neut M, Snyman CP (1992).
  • Sedimentary petrography of the Early Proterozoic Pretoria Group, Transvaal Sequence, South Africa: implications for tectonic setting. Sediment Geol 80: 89-103.
  • Sharland PR, Archer R, Casey DM, Davies RB, Hall SH, Heward AP, Horbury AD, Simmons MD (2001). Arabian Plate Sequence Stratigraphy. GeoArabia, Special Publication 2. Manama, Bahrain: Gulf PetroLink.
  • Singh P (2009). Major, trace and REE geochemistry of the Ganga River sediments: influence of provenance and sedimentary processes. Chem Geol 266: 242-255.
  • Singh P (2010). Geochemistry and provenance of stream sediments of the Ganga River and its major tributaries in the Himalayan region, India. Chem Geol 269: 220-236.
  • Tao H, Sun S, Wang Q, Yang X, Jiang L (2014) Petrography and geochemistry of Lower Carboniferous greywacke and mudstones in northeast Junggar, China: implications for provenance, source weathering, and tectonic setting. J Asian Earth Sci 87:11-25.
  • Tawfik HA, Ghandour IM, Maejima W, Armstron-Altrin JS, Abdel-Hameed AT (2015). Petrography and geochemistry of the siliciclastic Araba Formation (Cambrian), east Sinai, Egypt: implications for provenance, tectonic setting and source weathering. Geol Mag (in press).
  • Taylor SR, McLennan SH (1985). The geochemical evolution of the continental crust. Rev Geophys 33: 241-265.
  • Valloni R, Maynard B (1981). Detrital modes of recent deep-sea sands and their relation to tectonic setting: a first approximation. Sediment 28: 75-83.
  • Verma SP, Armstrong-Altrin JS (2013). New multi-dimensional diagrams for tectonic discrimination of siliclastic sediments and their application to Precambrian basins. Chem Geol 355: 117-133.
  • Verma SP, Armstrong-Altrin JS (2016). Geochemical discrimination of siliclastic sediments from active and passive margin settings. Sediment Geol 332: 1-12.
  • Wrafter JP, Graham JR (1989). Ophiolitic detritus in the Ordovician sediments of 700 South Mayo, Ireland. J Geol Soc London 146: 213-215.
  • Yan Y, Xia B, Lin CX, Hu XQ, Yan P, Zhang F (2007). Geochemistry of the sedimentary rocks from the Nanxiong Basin, South China and implications for provenance, paleoenvironment and paleoclimate at the K/T boundary. Sediment Geol 197: 127-140.
  • Zaid SM (2015) Geochemistry of sandstones from the Pliocene Gabir Formation, north Marsa Alam, Red Sea, Egypt: implication for provenance, weathering and tectonic setting. J Afr Earth Sci 102: 1-17.