Formation of Ti-rich bauxite from alkali basalt in continental margin carbonates, Payas region, SE Turkey: implications for sea level change in the Upper Cretaceous

Formation of Ti-rich bauxite from alkali basalt in continental margin carbonates, Payas region, SE Turkey: implications for sea level change in the Upper Cretaceous

The Payas region bauxite deposits occur as a sandwiched layer that is a few kilometers long and an average of 10 m thick between the lower and upper Cretaceous carbonates of the Arabian Platform. The bauxites occur as 2 types, comprising blanket and pocket, are chemically and texturally homogeneous, and have a thrust structure with ophiolitic mélange formations. The bauxite varies in color, from reddish-brown to grayish-green to black, and has a massive, patchy, and very rare oolitic-pisolitic texture. The bauxite mainly consists of diaspore, hematite, rutile, anatase, rare kaolinite, boehmite, and pyrite minerals.The prismatic and lath-shaped euhedral rutile within the bauxites indicated in situ formation of the bauxites from Ti-rich basaltic pyroclastics. The chondrite-normalized rare earth element pattern of the bauxite was similar to the basalt pattern and had a very weak Eu anomaly (0.9). There are 2 groups of elements have been enriched in the Payas region bauxite: the first group contains $TiO_2$ (9.67wt%), Cr (752 ppm), V (617 ppm) and Ni (72 ppm), and the second group comprises Zr (993 ppm), Nb (86 ppm) and Sn (7 ppm). These 2 groups of element enrichment indicated that the parental material of bauxite had an alkali basalt character. The carbon and oxygen isotope stratigraphy throughout the carbonate section from the bottom to the top indicated that the climate was warm during bauxitization (mean $δ18O_{VPDB}: –6.15‰)$ and relatively cold after bauxite deposition (mean $δ18O_{VPDB}: –4.71‰)$. A marine regression during the warm climate could have been related to the uplifting of the coastal zone, which was linked to the vertical fault movements of the normal faults. A rapid transgression after bauxite formation during the cold climate period can be explained by subsidence of the continental margin, which was associated with episodic ophiolitic nappe loading during the closure of the Neotethyan Ocean in the region.

___

  • Abedini A, Azizi MR, Calagari AA (2019). REE mobility and tetrad effects in bauxites: An example from the Kanisheeteh deposit, NW Iran. Acta Geodynamica et Geomaterialia 16 (193): 11-26. doi: 10.13168/AGG.2019.0002
  • Abedini A, Calagari AA (2014). REE geochemical characteristics of titanium-rich bauxites: the Permian Kanigorgeh horizon, NW Iran. Turkish Journal of Earth Science 23: 513-532. doi: 10.3906/yer-1404-11
  • Abedini A, Khosravi M (2020). Geochemical constraints on the Triassic-Jurassic Amir-Abad karst-type bauxite deposit, NW Iran. Journal of Geochemical Exploration 211: 106489. doi: 10.1016/j.gexplo.2020.106489
  • Abedini A, Giovanni M, Khosravi M, Sinisi R (2020). Geochemistry and secular trends in the middle–late Permian karst bauxite deposits, northwestern Iran. Ore Geology Reviews 124: 103660. doi: 10.1016/j.oregeorev.2020.103660
  • Ahmadnejad F, Zamanian H, Taghipour B, Zarasvandi A, Buccione R et al. (2017). Mineralogical and geochemical evolution of the Bidgol bauxite deposit, Zagros Mountain Belt, Iran: implications for ore genesis, rare earth elements fractionation and parental affinity. Ore Geology Reviews 86: 755-783. doi: 10.1016/j.oregeorev.2017.04.006
  • Aleva GJJ (1994). Laterites: Concepts, Geology, Morphology and Chemistry. Wageningen, Netherlands: International Soil Reference and Information Centre (ISRIC).
  • Atan OR (1969). Eğribucak-Karacaören (Hassa)- Ceylanlı-Dazevleri (Kırıkhan) arasındaki Amanos dağlarının jeolojisi. MTA Publications No. 139. Ankara, Turkey: MTA, p. 85 (in Turkish).
  • Aydoğan MS, Moazzen M (2012). Origin and metamorphism of corundum‐rich metabauxites at Mt. Ismail in the Southern Menderes Massif, SW Turkey. Resource Geology 62 (3): 243- 262. doi: 10.1111/j.1751-3928.2012.00193.x
  • Ayhan A, Karadağ MM (1985). Geology and origin of bauxitic iron and ferruginous bauxite deposits in the South of Şarkikaraağaç (Isparta). Bulletin of the Geological Society of Turkey 28: 137- 146 (in Turkish with English abstract).
  • Balasubramaniam KS, Surendra M, Ravikumar TV (1987). Genesis of certain bauxite profiles from India. Chemical Geology 60: 227-235. doi: 10.1016/0009-2541(87)90128-8
  • Bárdossy G (1982). Karst Bauxites, Bauxite Deposits on Carbonate Rocks. Developments in Economic Geology 14. Amsterdam, Netherlands: Elsevier.
  • Bárdossy G, Aleva GJJ (1990). Lateritic Bauxites. Amsterdam, Netherlands: Elsevier.
  • Bárdossy G, Boni M, Dall’Aglio M, D’Argenio B, Pantó G (1977). Bauxites of Peninsular Italy: Composition, Origin and Geotectonic Significance. Gebrüder Borntraeger Verlagsbuchhandlung 15: 1-61.
  • Boni M, Reddy SM, Mondillo N, Balassone G, Taylor RA (2012). A Distant magmatic source for Cretaceous karst bauxites of southern Apennines (Italy) revealed through SHRIMP zircon age dating. Terra Nova 24: 326-332. doi: 10.1111/j.1365- 3121.2012.01068.x
  • Boni M, Rollinson G, Mondillo N, Balassone G, Santoro L (2013). Quantitative mineralogical characterization of karst bauxite deposits in the southern Apennines, Italy. Economic Geology 108: 813-833. doi: 10.2113/econgeo.108.4.813
  • Bozkır Y (2007). Çarıksaraylar ile Kozluçay (Sarkikaraağaç-Isparta) arasındaki boksitlerin NTE’leri ve oluşum şartları. MSc thesis, Selçuk University, Konya, Turkey (in Turkish with English abstract).
  • Brimhall GH, Dietrich WE (1987). Constitutive mass balance differential feldspar weathering in granites 867 relations between chemical composition, volume, density, porosity, and strain in metasomatic hydrochemical systems: results on weathering and pedrogenesis. Geochimica et Cosmochimica Acta 51: 567-587.
  • Brimhall GH, Lewis CJ, Ague JJ, Dietrcih WE, Hampel J et al. (1988). Metal enrichment in bauxites by deposition of chemically mature aeolian dust. Nature 333: 819-824. doi: 10.1038/333819a0
  • Çağatay A, Arman B (1982). Bauxite and bauxite deposits in Turkey. Geological Engineering 14: 23-33 (in Turkish with English abstract).
  • Calagari AA, Abedini A (2007). Geochemical investigations on Permo–Triassic bauxite horizon at Kanisheeteh, east of Bukan, West–Azarbaidjan, Iran. Journal of Geochemical Exploration 94: 1-18. doi: 10.1016/j.gexplo.2007.04.003
  • Ceramicola S, Stoker M, Praeg D, Shannon PM, De Santis L et al. (2005). Anomalous Cenozoic subsidence along the ‘passive’ continental margin from Ireland to mid-Norway. Marine and Petroleum Geology 22 (9-10): 1045-1067. doi: 10.1016/j. marpetgeo.2005.04.005
  • Comer JB (1974). Genesis of Jamaican bauxite. Economic Geology 69: 1251-1264.
  • D’Argenio B, Mindszenty A (1995). Bauxites and related paleokarst: tectonic and climatic event markers at regional unconformities. Eclogae Geologicae Helvetiae 88: 453-499.
  • Duman TY, Robertson AHF, Elmacı H, Kara M (2017). Palaeozoicrecent geological development and uplift of the Amanos Mountains (S Turkey) in the critically located northwesternmost corner of the Arabian continent. Geodinamica Acta 29: 103- 138. doi: 10.1080/09853111.2017.1323428
  • Fritz S, Toth TA (1997). An Fe-berthierine from a Cretaceous Laterite: Part II. estimation of Eh, pH and pCO2 conditions of formation. Clays and Clay Minerals 45: 580-586. doi: 10.1346/ CCMN.1997.0450409
  • Gamaletsos PN, Godelitsas A, Filippidis A, Pontikes Y (2019). The rare earth elements potential of Greek bauxite active mines in the light of a sustainable REE demand. Journal of Sustainable Metallurgy 5: 20-47. doi: 10.1007/s40831-018-0192-2
  • Hajikazemi E, Al-Aasm IS, Coniglio M (2010). Subaerial exposure and meteoric diagenesis of the Cenomanian-Turonian Upper Sarvak Formation, southwestern Iran. Geological Society, London, Special Publications 330: 253-272. doi: 10.1144/ SP330.12
  • Hanilçi N (2013). Geological and geochemical evolution of the Bolkardağı bauxite deposits, Karaman, Turkey: transformation from shale to bauxite. Journal of Geochemical Exploration 133: 118-137. doi: 10.1016/j.gexplo.2013.04.004
  • Hanilçi N (2019). Bauxite deposits of Turkey. In: Pirajno F, Ünlü T, Dönmez C, Şahin MB (editors). Mineral Resources of Turkey. Modern Approaches in Solid Earth Sciences, Vol. 16. Berlin, Germany: Springer, pp. 681-730. doi: 10.1007/978-3-030- 02950-0_15
  • Hastie AR, Mitchell SF, Kerr AC, Minifie MJ, Millar IL (2011). Geochemistry of rare high-Nb basalt lavas: Are they derived from a mantle wedge metasomatised by slab melts? Geochemica et Cosmochimica Acta 75: 5049-5072. doi: 10.1016/j.gca.2011.06.018
  • Hatipoğlu M (2011). Al (Fe, Ti, Si)-mobility and secondary mineralization implications: A case study of the karst unconformity diasporite-type bauxite horizons in Milas (Muğla), Turkey. Journal of African Earth Sciences 60 (3): 175- 195.
  • Heller PL, Bowdler SS, Chambers HP, Coogan JC, Hagen ES et al. (1986). Time of initial thrusting in the Sevier orogenic belt, Idaho-Wyoming and Utah. Geology 14 (5): 388-391. doi: 10.1130/0091-7613(1986)14<388:TOITIT>2.0.CO;2
  • Hofmann AW, Jochum KP (1996). Source characteristics derived from very incompatible trace elements in Mauna Loa and Mauna Kea basalts, Hawaii Scientific Drilling Project. Journal of Geophysical Research 101: 11831-11839. doi: 10.1029/95JB03701
  • Hole MJ, Rogers G, Saunders AD, Storey M (1991). Relation between alkali volcanism and slab-window formation. Geology 19: 657- 660. doi: 10.1130/0091-7613(1991)019<0657:RBAVAS>2.3. CO;2
  • Jackson MC, Frey FA, Garcia MO, Wilmoth RA (1999). Geology and geochemistry of basaltic lava flows and dikes from the TransKoolau tunnel, Oahu, Hawaii. Bull Volcanology 60: 381-401. doi: 10.1007/s004450050239
  • Jones MA, Heller PL, Roca E, Garces M, Cabrera L (2004). Time lag of syntectonic sedimentation across an alluvial basin: theory and example from the Ebro Basin, Spain. Basin Research 16 (4): 467-488. doi: 10.1111/j.1365-2117.2004.00244.x
  • Karadağ M (1987). The geological and petrographic and genetical investigation of the Seydişehir region bauxites. PhD, Konya Selçuk University, Konya, Turkey (in Turkish).
  • Karadağ MM, Küpeli Ş, Arık F, Ayhan A, Zedef V et al. (2009). Rare earth element (REE) geochemistry and genetic implications of the Mortaş bauxite deposit (Seydişehir/Konya — Southern Turkey) . Geochemistry 69 (2): 143-159. doi: 10.1016/j. chemer.2008.04.005
  • Koç Ş, Değer MA (1992). Karstik Payas (Hatay) cevherleşmelerinin kaynağına yönelik jeokimyasal veriler. Bulletin of the Mineral Research and Exploration 114: 95-110 (in Turkish).
  • Kuşçu İ, Kuşçu GG, Tosdal RM, Ulrich TD, Friedman R (2010). Magmatism in the southeastern Anatolian orogenic belt: transition from arc to post-collisional setting in an evolving orogeny. In: Sosson M, Kaymakci N, Stephenson RA, Bergerat F, Starostenko V (editors). Sedimentary Basin Tectonics from the Black Sea and Caucasus to the Arabian Platform. Geological Society, London, Special Publications 340: 437-460. doi: 10.1144/SP340.19
  • Liu X, Wang Q, Deng J, Zhang Q, Sun S, Meng J (2010). Mineralogical and geochemical investigations of the Dajia Salentotype bauxite deposits, western Guangxi, China. Journal of Geochemical Exploration 105: 137-152. doi: 10.1016/j. gexplo.2010.04.012
  • Liu X, Wang Q, Zhang Q, Zhang Y, Li Y (2016). Genesis of REE minerals in the karstic bauxite in western Guangxi, China, and its constraints on the deposit formation conditions. Ore Geology Reviews 75: 100-115. doi: 10.1016/j.oregeorev.2015.12.015
  • Long Y, Chi G, Liu J, Zhang D, Song H (2018). Uranium enrichment in a paleo-karstic bauxite deposit, Yunfeng, SW China: mineralogy, geochemistry, transport – deposition mechanisms and significance for uranium exploration. Journal of Geochemical Exploration 190: 424-435. doi: 10.1016/j. gexplo.2018.04.010
  • Lowenstam HA (1964). Palaeotemperatures of the Permian and Cretaceous periods. In: Nairn AE (editor). Problems in Palaeoclimatology. London, UK: Interscience, pp. 227-248.
  • MacLean WH (1990). Mass change calculations in altered rock series. Mineralium Deposita 25 (1): 44-49. doi: 10.1007/BF03326382
  • MacLean WH, Bonavia FF, Sanna G (1997). Argillite debris converted to bauxite during karst weathering: evidence from immobile element geochemistry at the Olmedo Deposit, Sardinia. Mineralium Deposita 32: 607-616. doi: 10.1007/ s001260050126
  • MacLean WH, Kranidiotis P (1987). Immobile elements as monitors of mass transfer in hydrothermal alteration; Phelps Dodge massive sulfide deposit, Matagami, Quebec. Economic Geology 82: 951-962. doi: 10.2113/gsecongeo.82.4.951
  • Mameli P, Mongelli G, Oggiano G, Dinelli E (2007). Geological, geochemical and mineralogical features of some bauxite deposits from Nurra (Western Sardinia, Italy): insights on conditions of formation and parental affinity. International Journal of Earth Sciences 96 (5): 887-902. doi: 10.1007/s00531- 006-0142-2
  • Mc Donald G, Katsura T (1964). Chemical composition of Hawaiian lavas: Journal of Petrology 5: 82-133. doi: 10.1093/ petrology/5.1.82
  • McDonough WF, Sun SS (1995). The composition of the Earth. Chemical Geolology 120: 223–253. doi: 10.1016/0009- 2541(94)00140-4
  • Mondillo N, Boni M, Balassone G, Rollinson G (2011). Karst bauxites in the Campania Apennines (southern Italy): a new approach. Periodico Mineralogia 80: 407-432. doi: 10.2451/2011PM0028
  • Mongelli G (1993). REE and other trace elements in a granitic weathering profile from ‘‘Serre”, southern Italy. Chemical Geology 103: 17-25. doi: 10.1016/0009-2541(93)90288-T
  • Mongelli G, Boni M, Oggiano G, Mameli P, Sinisi R et al. (2017). Critical metals distribution in Tethyan karst bauxite: the Cretaceous Italian ores. Ore Geology Reviews 86: 526-536. doi: 10.1016/j.oregeorev.2017.03.017
  • Mongelli G, Buccione R, Gueguen E, Langone A, Sinisi R (2016). Geochemistry of the apulian allochthonous karst bauxite, Southern Italy: Distribution of critical elements and constraints on Late Cretaceous Peri-Tethyan paleogeography. Ore Geology Reviews 77: 246-259.doi: 10.1016/j.oregeorev.2016.03.002
  • Montford HM (1970). The terrestrial environment during Upper Cretaceous and tertiary times. Proceedings of the Geologists’ Association 81(2): 181-204. doi: 10.1016/S0016- 7878(70)80020-7
  • Morelli F, Cullers R, Laviano R, Mongelli G (2000). Geochemistry and palaeoenvironmental significance of Upper Cretaceous clay-rich beds from the Periadriatic Apulia Carbonate Platform, southern Italy. Periodico di Mineralogia 69: 185-183.
  • Nicolas J, Özlü N (1976). Contribution AL’etude De Gisement De Bauxite De Kiziltas Dans Les Taurides Occidentales (Turquie Meridionale). Comptes Rendus de l’Académie des Sciences Serie D 282 (0013): 1253-1255 (in French).
  • Okay A, Tüysüz O (1999). Tethyan sutures of northern Turkey. Geological Society, London, Special Publications 156 (1): 475- 515. doi: 10.1144/GSL.SP.1999.156.01.22
  • Okay AI (2008). Geology of Turkey: a synopsis. Anschnitt 21: 19-42.
  • Özlü N (1977). Different modes of formation of bauxite Breccia in Bauxite deposits of Western Taurides (Southern Turkey). Comptes Rendus Hebdomadaires des Seances de l’Academie des Sciences Serie D 84 (12): 1021-1023.
  • Özlü N (1978). Etude géologique minéralogue et géochmıque des bauxites de la région D’Akseki-Seydisehir Taurus occidentalTurquie. PhD, Pierre Marie Curie University, Paris, France (in French).
  • Özlü N (1983). Trace-element content of ‘‘Karst Bauxites” and their parent rocks in the Mediterranean belt. Mineralium Deposita 18: 469-476. doi: 10.1007/BF00204491
  • Öztürk H, Hanilçi N, Altuncu S, Kasapçı C (2019). Rare earth element (REE) resources of Turkey: an overview of their characteristics and origin. Bulletin of the Mineral Research and Exploration 159: 143-129. doi: 10.19111/bulletinofmre.471205
  • Öztürk H, Hein JR, Hanilçi N (2002). Genesis of the Doğankuzu and Mortaş bauxite deposits, Taurides, Turkey separation of Al, Fe and Mn and implications for passive margin metallogeny. Economic Geology 97: 1063-1077. doi: 10.2113/gsecongeo.97.5.1063
  • Öztürk H, Kasapçı C, Cansu Z, Hanilçi N (2016). Geochemical characteristics of iron ore deposits in central eastern Turkey: an approach to their genesis. International Geology Review 58: 1673-1690. doi: 10.1080/00206814.2016.1183236
  • Patterson SH (1967). Bauxite Reserves and Potential Aluminum Resources of the World. U.S. Geological Survey Bulletin 1228.
  • Pearce JA (1996). A Users Guide to Basalt Discrimination Diagrams. In: Wyman DA (editor). Trace Element Geochemistry of Volcanic Rocks: Applications for Massive Sulphide Exploration, Vol. 12. Geological Association of Canada Short Course Notes. St. John’s, NL, Canada: Geological Association of Canada, pp. 79-113.
  • Putzolu F, Papa AP, Mondillo N, Boni M, Balassone G et al. (2018). Geochemical characterization of bauxite deposits from the Abruzzi Mining District (Italy). Minerals 8(298): 1-24. doi: 10.3390/min8070298
  • Rhodes JM, Vollinger MJ (2004). Composition of basaltic lavas sampled by phase-2 of the Hawaii Scientific Drilling Project: geochemical stratigraphy and magma types. Geochemistry, Geophysics, Geosystems 5 (3): 1-38. doi:10.1029/2002GC000434
  • Salamab Ellahi S, Taghipour B, Zarasvandi A, Bird MI, Somarin AK (2016). Mineralogy, geochemistry and stable isotope studies of the Dopolan Bauxite Deposit, Zagros Mountain, Iran. Minerals 6 (1) 11:1-21. doi: 10.3390/min6010011
  • Schellmann W (1986). A new definition of laterite. In: Lateritisation Processes, IGCP-127. Geological Survey of India, Memoirs 120: 1-7.
  • Şengör AMC, Yılmaz Y (1981). Tethyan evolution in Turkey: a plate tectonic approach. Tectonophysics 75: 181-241. doi: 10.1016/0040-1951(81)90275-4
  • Shoji S (2006). Factors of soil formation: climate. As exemplified by volcanic ash soils. In: Certini G, Scalenghe R (editors). Soils: Basic Concepts and Future Challenges. Cambridge, UK: Cambridge University Press, pp. 131-150.
  • Singer A (1975). A Cretaceous laterite in the Negev Desert, southern Israel. Geological Magazine 112 (2): 151-162. doi: 10.1017/ S0016756800045830
  • Taylor SR, McLennan SM (editors) (1985). The Continental Crust: Its Composition and Evolution. Oxford, UK: Blackwell Scientific Publications.
  • Temur S, Orhan H, Kurt H (2005). Mass and Volume Change Calculations of the Masatdagi (Alanya-Antalya) Bauxites from Southern Turkey. Geochemistry International 43 (2): 202-210.
  • Temur S (2006). A geochemical approach to parent rocks of the Maşatdaği diasporic bauxite, Alanya, Antalya, southern Turkey. Geochemistry International 44 (9): 941-952. doi: 10.1134/S0016702906090096
  • Torró L, Proenza JA, Aiglsperger T, Bover-Arnal T, Villanovade-Benavent C et al. (2017). Geological, geochemical and mineralogical characteristics of REE-bearing Las Mercedes bauxite deposit, Dominican Republic. Ore Geology Reviews 89: 114-131. doi: 10.1016/j.oregeorev.2017.06.017
  • Voßenkaul D, Stoltz NB, Meyer FM, Friedrich B (2015). Extraction of rare Earth elements from non-Chinese ion adsorption clays. In: Proceedings of EMC, European Metallurgical Conference; Düsseldorf, Germany. pp. 1-11.
  • Wang Q, Deng J, Zhang Q, Liu H, Liu X et al. (2011). Orebody vertical structure and implications for ore-forming processes in the Xinxu bauxite deposit, Western Guangxi, China. Ore Geology Reviews 39 (4): 230-244. doi: 10.1016/j.oregeorev.2011.02.004
  • Weaver BL (1991). Trace element evidence for the origin of ocean–island basalts. Geology 19 (2): 123-126. doi: 10.1130/0091-7613(1991)019<0123:TEEFTO>2.3.CO;2
  • Winchester JA, Floyd PA (1976). Geochemical magma type discrimination: application to altered and metamorphosed basic igneous rocks. Earth and Planetary Science Letters 28: 459-469. doi: 10.1016/0012-821X(76)90207-7
  • Xie X, Heller PL (2009). Plate tectonics and basin subsidence history. GSA Bulletin121: 55-64. doi: 10.1130/B26398.1
  • Yalçın MG, İlhan S (2013). Major and trace element geochemistry of bauxites of Ayranci, Karaman, Central Bolkardag, Turkey. Asian Journal of Chemistry 25 (5): 2893-2904.
  • Yang L, Wang Q, Zhang Q, Carranza EJM, Liu H et al. (2017). Interaction between karst terrain and bauxites: evidence from Quaternary orebody distribution in Guangxi, SW China. Scientific Reports 7 (1): 1-9. doi: 10.1038/s41598-017-12181-1
  • Yu W, Wang R, Zhang Q, Du Y, Chen Y et al. (2014). Mineralogical and geochemical evolution of the Fusui bauxite deposit in Guangxi, South China: from the original Permian orebody to a Quarternary Salento-type deposit. Journal of Geochemical Exploration 146: 75-88. doi: 10.1016/j.gexplo.2014.07.020
  • Zamanian H, Ahmadnejad F, Zarasvandi A (2016). Mineralogical and geochemical investigations of the Mombi bauxite deposit, Zagros Mountains, Iran. Geochemistry 76 (1): 13-37. doi: 10.1016/j.chemer.2015.10.001
  • Zarasvandi A, Charchi A, Carranza EJM, Alizadeh B (2008). Karst bauxite deposits in the Zagros Mountain Belt, Iran. Ore Geology Reviews 38 (4): 521-532. doi: 10.1016/j.oregeorev.2008.05.005