Late Pleistocene-Holocene characteristics of the North Anatolian Fault at Adapazarı Basin: evidence from the age and geometry of the fluvial terrace staircases

Late Pleistocene-Holocene characteristics of the North Anatolian Fault at Adapazarı Basin: evidence from the age and geometry of the fluvial terrace staircases

The Late Pleistocene-Holocene evolution of the Adapazarı Basin was investigated using the stratigraphy, geometry, and absoluteluminescence dating of the 4-step fluvial terrace staircases of the Sakarya River. The results revealed that the fluvial cycle was primarily related to relative sea level changes of the Black Sea. The initiation of deposition and the abandonment ages of the terraces indicated relative high stands during marine isotope stage (MIS) 5a (~84–72 ka), 3 (40–30 ka), and 1 (9 ka-recent). The erosional periods in between the terrace steps reflected the response of the Sakarya River to the significantly low stands of the sea. The spatiotemporal position of the high terraces (T4 and T3) yielded an average of 0.78 ± 0.03 mm/year, and uniform and aseismic rock uplift rate for the NW part of the Anatolian Plate bounded by the North Anatolian Fault, which ruptured during the 1999 İzmit earthquake. The lower terrace (T1) was previously used to determine the horizontal slip rate of the Sapanca-Akyazı segment of the earthquake rupture and reported as 16.7 + 3.6/–2.5 mm/year. Further displacement measurements from the surfaces of T2 and T1 yielded a vertical slip rate of 1.49 ± 0.2 mm/year, calculated for the Late Holocene. Extrapolation of these 2 vertical rates to the south and north of the fault zone, in time and space, used in conjunction with the stratigraphy and geometry of the Adapazarı Basin, provided an estimation constraining the timing of the initiation of the fault to 450 ± 50 ka and the total thickness of the basin to ~1100 m.

___

  • Aitken MJ (1998). An Introduction to Optical Dating. The Dating of Quaternary Sediments by the Use of Photon-Stimulated Luminescence. Oxford, UK: Oxford University Press.
  • Algan O, Gökaşan E, Gazioğlu C, Yücel ZY, Alpar B et al. (2002). A high-resolution seismic study in Sakarya Delta and Submarine Canyon, southern Black Sea shelf. Continental Shelf Research 22 (10): 1511-1527.
  • Akbayram K, Sorlien CC, Okay A (2016). Evidence for a minimum 52 ± 1 km of total offset along the northern branch of the North Anatolian Fault in northwest Turkey. Tectonophysics 668: 35- 41.
  • Akyuz HS, Hartleb R, Barka A, Altunel E, Sunal G et al. (2002). Surface rupture and slip distribution of the 12 November 1999 Duzce earthquake (M 7.1), North Anatolian fault, Bolu, Turkey. Bulletin of the Seismological Society of America 92 (1): 61-66.
  • Aktug B, Nocquet JM, Cingöz A, Parsons B, Erkan Y et al. (2009). Deformation of western Turkey from a combination of permanent and campaign GPS data: limits to block‐like behavior. Journal of Geophysical Research: Solid Earth 114 (B10). doi: 10.1029/2008JB006000
  • Armijo R, Meyer B, Hubert A, Barka A (1999). Westward propagation of the North Anatolian fault into the northern Aegean: timing and kinematics. Geology 27 (3): 267-270.
  • Aslan G, Lasserre C, Cakir Z, Ergintav S, Özarpaci S et al. (2019). Shallow Creep along the 1999 Izmit Earthquake Rupture (Turkey) From GPS and High Temporal Resolution Interferometric Synthetic Aperture Radar Data (2011–2017). Journal of Geophysical Research Solid Earth 124: 2218-2236. doi: 10.1029/2018JB017022
  • Badertscher S, Fleitmann D, Cheng H, Edwards, RL, Göktürk OM et al. (2011). Pleistocene water intrusions from the Mediterranean and Caspian seas into the Black Sea. Nature Geoscience 4: 236- 239. doi: 10.1038/ngeo1106
  • Barka AA, Gülen L (1989). Complex evolution of the Erzincan Basin (eastern Turkey). Journal of Structural Geology 11: 275-283. doi: 10.1016/0191-8141(89)90067-9
  • Barka A (1996). Slip distribution along the North Anatolian fault associated with the large earthquakes of the period 1939 to 1967. Bulletin of the Seismological Society of America 86 (5): 1238- 1254.
  • Barka A, Akyüz HS, Cohen HA, Watchorn F (2000). Tectonic evolution of the Niksar and Tasova–Erbaa pull-apart basins, North Anatolian Fault Zone: their significance for the motion of the Anatolian block. Tectonophysics 322 (3-4): 243-264.
  • Barka A, Akyüz HS, Altunel E, Sunal G, Çakir Z et al. (2002). The surface rupture and slip distribution of the 17 August 1999 İzmit earthquake (M 7.4), North Anatolian fault. Bullettinof Seismological Society of America 92: 43-60. doi: 10.1785/0120000841
  • Berndt C, Yıldırım C, Çiner A, Strecker MR, Ertunç G et al. (2018). Quaternary uplift of the northern margin of the Central Anatolian Plateau: new OSL dates of fluvial and delta-terrace deposits of the Kızılırmak River, Black Sea coast, Turkey. Quaternary Science Reviews 201: 446-469. doi: 10.1016/j. quascirev.2018.10.029
  • Bilgin T (1984). Adapazarı Ovası ve Sapanca oluğunun aluviyal morfolojisi ve Kuvaterner’deki Jeomorfolojik tekamülü. İstanbul, Turkey: İstanbul Üniversitesi Edebiyat Fakültesi Matbaası (in Turkish).
  • Blum MD, Törnqvist TE (2000). Fluvial responses to climate and sealevel change: a review and look forward. Sedimentology 47: 2-48.
  • Bonnet S, Reimann T, Wallinga J, Lague D, Davy P et al. (2019). Landscape dynamics revealed by luminescence signals of feldspars from fluvial terraces. Scientific Reports 9: 8569. doi: 10.1038/s41598-019-44533-4
  • Bridgland DR (2000). River terrace systems in north-west Europe: an archive of environmental change, uplift and early human occupation. Quaternary Science Reviews 19: 1293-1303. doi: 10.1016/S0277-3791(99)00095-5
  • Bridgland DR, Westaway R (2008). Climatically controlled river terrace staircases: a worldwide Quaternary phenomenon. Geomorphology 98: 286-315. doi: 10.1016/j. geomorph.2006.12.032
  • Bridgland DR, Demir T, Seyrek A, Daoud M, Abou Romieh M et al. (2017). River terrace development in the NE Mediterranean region (Syria and Turkey): patterns in relation to crustal type. Quaternary Science Reviews 166: 307-323. doi: 10.1016/j. quascirev.2016.12.015
  • Bronk Ramsey C (2009). Bayesian analysis of radiocarbon dates. Radiocarbon 51 (1): 337-360.
  • Bull WB (2008). Geomorphic Response to Climate Change. Caldwell, NJ, USA: The Blackburn Press.
  • Chepalyga AL (1984). Inland sea basin. In: Velichko AA, Wright Jr. HE, Barnowsky CW (editors). Late Quaternary Environments of the Soviet Union. Minneapolis, MN, USA: University of Minnesota Press, pp. 229-247.
  • Çağatay MN, Eriş KK, Makaroğlu Ö, Yakupoğlu N, Henry P et al. (2019). The sea of Marmara during Marine Isotope Stages 5 and 6. Quaternary Science Reviews 220: 124-141. doi: 10.1016/j. quascirev.2019.07.031
  • Cakir Z, Chabalier JBD, Armijo R, Meyer B, Barka A et al. (2003). Coseismic and early post-seismic slip associated with the 1999 Izmit earthquake (Turkey), from SAR interferometry and tectonic field observations. Geophysical Journal International 155 (1): 93-110.
  • Cowgill E (2007). Impact of riser reconstructions on estimation of secular variation in rates of strike-slip faulting: revisiting the Cherchen River site along the Altyn Tagh Fault, NW China. Earth Planetary Science Letters 254: 239-255. doi: 10.1016/j. epsl.2006.09.015
  • Çiner A, Doğan U, Yıldırım C, Akçar N, Ivy-Ochs S et al. (2015). Quaternary uplift rates of the Central Anatolia Plateau, Turkey: insights from cosmogenic isochron-burial nuclide dating of the Kızılırmak River terraces. Quaternary Science Reviews 107: 81-97. doi: 10.1016/j.quascirev.2014.10.007
  • Dikbaş A, Akyüz HS, Meghraoui M, Ferry M et al. (2018). Paleoseismic history and slip rate along the Sapanca-Akyazı segment of the 1999 İzmit earthquake rupture (Mw = 7.4) of the North Anatolian Fault (Turkey). Tectonophysics 738-739: 92-111. doi: 10.1016/j.tecto.2018.04.019
  • Doğan A (2004). Sakarya Havzası (Plio-Kuvaterner) güney kesimi Holosen istifinin sedimanter özellikleri ve jeolojik evrimi. MSc, Ankara University, Ankara, Turkey (in Turkish).
  • Ekström G, Nettles M, Dziewonski AM (2012). The global CMT project 2004-2010: Centroid-moment tensors for 13,017 earthquakes. Physics of the Earth and Planetary Interiors 200- 201: 1-9. doi: 10.1016/j.pepi.2012.04.002
  • Emre Ö, Erkal T, Tchepalyga A, Kazanci N et al. (1998). NeogeneQuaternary evolution of the eastern Marmara Region, Northwest Turkey. Mineral Research Exploration Bulletin 120: 119-145.
  • Emre Ö, Awata Y, Duman TY (editors.) (2003). 17 Ağustos 1999 İzmit Depremi Yüzey Kırığı (Surface Rupture Associated with the 17 August 1999 İzmit Earthquake). MTA Mineral Research Exploration Special Publications Serie-1: 280. Ankara, Turkey: MTA (in Turkish).
  • Emre Ö, Duman TY, Özalp S, Şaroğlu F et al. (2018). Active fault database of Turkey. Bulletin of Earthquake Engineering 16 (8): 3229-3275.
  • Erdal O, Erturaç MK, Dalfes HN, Sen S (2018). Rodents from the Middle Pleistocene of Niksar Basin (Tokat-Turkey): implications on palaeoenvironment and the North Anatolian Fault. Neues Jahrbuch für Geologie und PaläontologieAbhandlungen 289 (1):77-111. doi: njgpa/2018/0751
  • Ergintav S, McClusky S, Hearn E, Reilinger R, Cakmak R et al. (2009). Seven years of postseismic deformation following the 1999, M = 7.4 and M = 7.2, İzmit‐Düzce, Turkey earthquake sequence. Journal of Geophysical Research: Solid Earth 114 (B7).
  • Erturaç MK, Güneç Kıyak N (2017). Yeşilırmak taraçalarında (Orta Kuzey Anadolu) geç pleyistosen iklim değişiklikleri ve düşey yönlü deformasyona akarsu cevabının araştırılması. Türkiye Jeoloji Bülteni 60: 615-636 (in Turkish with English abstract). doi: 10.25288/tjb.370625
  • Erturaç, MK, Şahiner E, Zabcı C, Okur H et al. (2019a). Fluvial response to rising levels of the Black Sea and to climate changes during the Holocene: Luminescence geochronology of the Sakarya terraces. Holocene 29: 941-952. doi: 10.1177/0959683619831428
  • Erturaç MK, Erdal O, Sunal G, Tüysüz O, Şen Ş (2019b). Quaternary evolution of the Suluova Basin: Implications on tectonics and palaeonvironments of the central North Anatolian Shear Zone. Canadian Journal of Earth Sciences 56 (11): 1239-1261. doi: 10.1139/cjes-2018-0306
  • Faccenna C, Bellier O, Martinod J, Piromallo C, Regard V (2006). Slab detachment beneath eastern Anatolia: A possible cause for the formation of the North Anatolian fault. Earth and Planetary Science Letters 242 (1-2): 85-97.
  • Faust D, Wolf D (2017). Interpreting drivers of change in fluvial archives of the Western Mediterranean–a critical view. EarthScience Reviews 174: 53-83. doi: j.earscirev.2017.09.011
  • Galbraith RF, Roberts RG (2012). Statistical aspects of equivalent dose and error calculation and display in OSL dating: an overview and some recommendations. Quaternary Geochronology 11: 1-27. doi: 10.1016/j.quageo.2012.04.020
  • Gedik İ, Aksay A (2002). 1:100 000 ölçekli Türkiye Jeoloji Haritaları, No:32. Adapazarı G-25 paftası. Ankara, Turkey: MTA Jeoloji Etüdleri Dairesi (in Turkish).
  • Gibbard PL, Lewin J (2009). River incision and terrace formation in the Late Cenozoic of Europe. Tectonophysics 474 (1-2): 41-55.
  • Gold RD, Cowgill E, Arrowsmith JR, Chen X, Sharp WD et al. (2011). Faulted terrace risers place new constraints on the late Quaternary slip rate for the central Altyn Tagh fault, northwest Tibet. Geological Society of America Bulletin 123 (5-6): 958- 978.
  • Göktürk OM, Fleitmann D, Badertscher S, Cheng H, Edwards RL et al. (2011). Climate on the southern Black Sea coast during the Holocene: Implications from the Sofular Cave record. Quaternary Science Reviews 30: 2433-2445. doi: 10.1016/j. quascirev.2011.05.007
  • Görür N, Çağatay MN, Emre Ö, Alpar B, Sakınç M et al. (2001). Is the abrupt drowning of the Black Sea shelf at 7150 yr/bp a myth? Marine Geology 176: 65-73. doi: 10.1016/S0025-3227(01)00148- 7
  • Gürbüz A, Gürer ÖF (2008). Tectonic geomorphology of the North Anatolian Fault Zone in the Lake Sapanca basin (eastern Marmara Region, Turkey). Geosciences Journal 12: 215-225. doi: 10.1007/s12303-008-0022-9
  • Gürbüz, A, Gürer ÖF (2009). Middle Pleistocene extinction process of pull-apart basins along the North Anatolian Fault Zone. Physics of the Earth and Planetary Interiors 173 (1-2): 177-180.
  • Hussain E, Wright TJ, Walters RJ, Bekaert D, Hooper A et al. (2016). Geodetic observations of postseismic creep in the decade after the 1999 Izmit earthquake, Turkey: implications for a shallow slip deficit. Journal of Geophysical Research Solid Earth 121: 2980-3001. doi: 10.1002/2015JB012737
  • Jolivet L, Faccenna C, Huet B, Labrousse L, Le Pourhiet L et al. (2013). Aegean tectonics: strain localisation, slab tearing and trench retreat. Tectonophysics 597: 1-33. doi: 10.1016/j. tecto.2012.06.011
  • Jolivet L, Menant A, Sternai P, Rabillard A, Arbaret L et al. (2015). The geological signature of a slab tear below the Aegean. Tectonophysics 659: 166-182. doi: 10.1016/j.tecto.2015.08.004
  • Karahan AE, Berckhemer H, Baier B (2001). Crustal structure at the western end of the North Anatolian Fault Zone from deep seismic sounding. Annali di Geofisica 44 (1): 49-68.
  • Karsli O, Chen B, Uysal I, Aydin F, Wijbrans JR et al. (2008). Elemental and Sr–Nd–Pb isotopic geochemistry of the most recent Quaternary volcanism in the Erzincan Basin, Eastern Turkey: framework for the evaluation of basalt–lower crust interaction. Lithos 106: 55-70.
  • Keller EA, Pinter N (1996). Active Tectonics: Earthquakes, Uplift, and Landscape. Upper Saddle River, NJ, USA: Prentice Hall.
  • Keskin S, Pedoja, Bektaş O (2011). Coastal uplift along the eastern Black Sea coast: new marine terrace data from Eastern Pontides, Trabzon (Turkey) and a review. Journal of Coastal Research 27 (6A): 63-73.
  • Krijgsman W, Tesakov A, Yanina T, Lazarev S, Danukalova G et al. (2019). Quaternary time scales for the Pontocaspian domain: interbasinal connectivity and faunal evolution. Earth-Science Reviews 188: 1-40. doi: 10.1016/j.earscirev.2018.10.013
  • Lambeck K, Antonioli F, Purcell A, Silenzi S (2004). Sea level change along the Italian coast for the past 10,000 yr: Quaternary Science Reviews 23: 1567-1598. doi: 10.1016/j.quascirev.2004.02.009
  • Langridge RM, Stenner HD, Fumal TE, Christofferson SA, Rockwell TK et al. (2002). Geometry, slip distribution, and kinematics of surface rupture on the Sakarya fault segment during the 17 August 1999 İzmit, Turkey, earthquake. Bulletin of the Seismological Society of America 92: 107-125. doi: 10.1785/0120000804
  • Lavé J, Avouac JP (2001). Fluvial incision and tectonic uplift across the Himalayas of Central Nepal. Journal of Geophysical Research 106 (B11): 26561-26591.
  • Le Pichon X, Şengör AMC, Demirbağ E, Rangin C, Imren C et al. (2001). The active main Marmara fault. Earth and Planetary Science Letters 192 (4): 595-616.
  • Lisiecki LE, Raymo ME (2005). A Pliocene‐Pleistocene stack of 57 globally distributed benthic δ18O records. Paleoceanography 20: PA1003. doi: 10.1029/2004PA001071
  • Macklin MG, Lewin J, Woodward JC (2012). The fluvial record of climate change. Philosophical Transactions of the Royal Society 370: 2143-2172.
  • Maddy D, Veldkamp A, Demir T, Van Gorp W, Wijbrans JR et al. (2017). The Gediz River fluvial archive: a benchmark for Quaternary research in Western Anatolia. Quaternary Science Reviews 166: 289-306.
  • Nasif A, Özel FE, Dondurur D (2020). Seismic identification of gas hydrates: a case study from Sakarya Canyon, western Black Sea. Turkish Journal of Earth Sciences 29: 434-454. doi: 10.3906/yer1909-2
  • Neugebauer J (1995). Structures and kinematics of the North Anatolian Fault zone, Adapazarı-Bolu region, northwest Turkey. Tectonophysics 243: 119-134. doi: 10.1016/0040- 1951(94)00194-E
  • Okur H, Erturaç MK (2018). Temporal monitoring of vast sand extraction at Sakarya River floodplain (NW Turkey): implications for environmental impact and natural hazards (Geophysical Research Abstracts 20: EGU2018–847–2). In: EGU General Assembly; Vienna, Austria.
  • Olszak J (2017). Climatically controlled terrace staircases in uplifting mountainous areas. Global and Planetary Change 156: 13-23.
  • Öztürk F (1996). Suspended sediment yields of rivers in Turkey. International Association of Hydrological Sciences PublicationsSeries of Proceedings and Reports 236: 65-72.
  • Paluska A, Poetsch S, Bargu S (1989). Tectonics, paleoseismic activity and recent deformation mechanism in the Sapanca-Abant region (NW Turkey, North Anatolian Fault Zone). In: Turkish German Earthquake Research Project. Ankara, Turkey: Earthquake Research Institute; Kiel, Germany: University of Kiel. pp. 18-33.
  • Panin N (1983). Black Sea Coast line changes in the Last 10.000 Years. A new attempt at identifying the Danube mouths as described by the ancients. Dacia. Revue d’Archéologie et d’Histoire Ancienne Bucuresti 27 (1-2): 175-184.
  • Panin N, Popescu I (2007). The northwestern Black Sea: climatic and sea-level changes in the Late Quaternary. In: Yanko-Hombach V, Gilbert AS, Panin N, Dolukhanov PM (editors). The Black Sea Flood Question: Changes in Coastline, Climate and Human Settlement. New York, NY, USA: Springer, pp. 387-405.
  • Pazzaglia FJ (2013). Fluvial terraces. In: Shroder JF (editor) Treatise on Geomorphology, Vol. 9-22. San Diego, CA, USA: Academic Press, pp. 379-412.
  • Philippon M, Brun JP, Gueydan F, Sokoutis D (2014). The interaction between Aegean back-arc extension and Anatolia escape since Middle Miocene. Tectonophysics 631: 176-188. doi: 10.1016/j. tecto.2014.04.039
  • Reilinger R, McClusky S, Vernant P, Lawrence S, Ergintav S et al. (2006). GPS constraints on continental deformation in the Africa‐ Arabia‐Eurasia continental collision zone and implications for the dynamics of plate interactions. Journal of Geophysical Research: Solid Earth 111 (B5).
  • Reimer PJ, Austin Wen, Bard E, Bayliss A, Blackwell P et al. (2020). The IntCal20 Northern Hemisphere radiocarbon calibration curve (0–55 kcal BP). Radiocarbon 62: 725-757. doi: 10.1017/ RDC.2020.41
  • Rixhon G, Briant RM, Cordier S, Duval M, Jones A et al. (2017). Revealing the pace of river landscape evolution during the Quaternary: recent developments in numerical dating methods. Quaternary Science Reviews 166: 91-113.
  • Ryan WB, Major CO, Lericolais G, Goldstein SL (2003). Catastrophic flooding of the Black Sea. Annual Review of Earth and Planetary Sciences 31 (1): 525-554.
  • Schildgen TF, Cosentino D, Bookhagen B, Niedermann S et al. (2012). Multi-phased uplift of the southern margin of the Central Anatolian plateau, Turkey: a record of tectonic and upper mantle processes. Earth and Planetary Science Letters 317-318: 85-95. doi: 10.1016/j.epsl.2011.12.003
  • Schumm SA (1993) River response to base level change: Implications for sequence stratigraphy. Journal of Geology 101: 279-294.
  • Sorlien CC, Akhun SD, Seeber L, Steckler MS, Shillington DJ et al. (2012). Uniform basin growth over the last 500 ka, North Anatolian Fault, Marmara Sea, Turkey. Tectonophysics 518: 1-16.
  • Spratt RM, Lisiecki LE (2016). A Late Pleistocene sea level stack. Climate of the Past 12: 1079-1092. doi: 10.5194/cp-12-1079-2016
  • Stein RS, Barka AA, Dieterich JH (1997). Progressive failure on the North Anatolian fault since 1939 by earthquake stress triggering. Geophysical Journal International 128 (3): 594-604.
  • Sunal G, Erturaç MK(2012). Estimation of the pre-North Anatolian Fault Zone pseudo-paleo-topography: a key to determining the cumulative offset of major post-collisional strikeslip faults. Geomorphology 159: 125-141. doi: 10.1016/j. geomorph.2012.03.013
  • Sunal G, Erturaç MK, Gutsuz P, Dunkl I, Cakir Z (2019). Reconstructing the deformation of the north Anatolian fault zone through restoring the oligo–miocene exhumation pattern of the almacık block (Northwestern Turkey) based on the apatite (U–Th)/he ages. Canadian Journal of Earth Sciences 56: 1202-1217. doi: 10.1139/cjes-2018-0283
  • Sümer Ö, Uzel B, Özkaymak Ç, Sözbilir H (2018). Kinematics of the Havran-Balıkesir Fault Zone and its implication on geodynamic evolution of the Southern Marmara Region, NW Anatolia. Geodinamica Acta 30 (1): 306-323.
  • Svitoch AA, Selivanov AO, Yanina TA (2000). Paleohydrology of the Black Sea Pleistocene Basins. Water Resources 27: 594-603. doi: 10.1023/A:1026661801941
  • Şahiner E, Erturaç MK, Polymeris GS, Meriç N (2018). Methodological studies on integration time interval’s selection for the luminescence ages using quartz and feldspar minerals; sediments collected from Sakarya, Turkey. Radiation Measurements 120: 163-169. doi: 10.1016/j. radmeas.2018.06.024
  • Şengör AMC, Görür N, Şaroğlu F (1985). Strike-slip faulting and related basin formation in zones of tectonic escape: Turkey as a case study. In: Biddle KT, Christie-Blick N (editors). Strikeslip Deformation, Basin Formation, and Sedimentation.
  • Oklahoma, OK, USA: Society of Economic Paleontologists and Mineralogists, pp. 227-264.
  • Şengör AMC, Tüysüz O, İmren C, Sakınç M, Eyidoğan H et al. (2005). The North Anatolian Fault: a new look. Annual Reviews of Earth Planetery Sciences 33: 37-112. doi: 10.1146/annurev. earth.32.101802.120415
  • Şengör, AMC, Grall C, İmren C, Le Pichon X, Görür N et al. (2014). The geometry of the North Anatolian transform fault in the Sea of Marmara and its temporal evolution: implications for the development of intracontinental transform faults. Canadian Journal of Earth Sciences 51 (3): 222-242.
  • Şengör AMC, Zabcı C, Natal’in BA (2019). Continental transform faults: congruence and incongruence with normal plate kinematics. In: Transform plate boundaries and fracture zones. Amsterdam, Netherlands: Elsevier, pp. 169-247. doi: 10.1016/ B978-0-12-812064-4.00009-8
  • Tari U, Tüysüz O (2016). The effects of the North Anatolian Fault on the geomorphology in the Eastern Marmara Region, Northwestern Turkey. Geodinamica Acta 28: 139-159. doi: 10.1080/09853111.2015.1065308
  • Tatar O, Yurtmen S, Temiz H, Gürsoy H, Koçbulut F et al. (2007). Intracontinental Quaternary volcanism in the Niksar pullapart basin, North Anatolian Fault Zone, Turkey. Turkish Journal of Earth Sciences 16 (4): 417-440.
  • Thiel C, Buylaert J, Murray A, Terhorst B, Hofer I et al. (2011). Luminescence dating of the Stratzing loess profile (Austria)- testing the potential of an elevated temperature post-IR IRSL protocol. Quaternary International 234: 23-31.
  • Timur E, Aksay A (2002). 1:100 000 ölçekli Türkiye Jeoloji Haritaları, No:31. Adapazarı G-24 paftası. Ankara, Turkey: MTA Jeoloji Etüdleri Dairesi.
  • Türkeş M (1996). Spatial and temporal analysis of annual rainfall variations in Turkey. International Journal of Climatology 16: 1057-1076.
  • Ünay E, Emre Ö, Erkal T, Keçer M (2001). The rodent fauna from the Adapazarı pull-apart basin (nwanatolia): its bearings on the age of the north anatolian fault. Geodinamica Acta 14: 169- 175. doi: 10.1080/09853111.2001.11432442
  • Vandenberghe J (2002). The relation between climate and river processes, landforms and deposits during the Quaternary. Quaternary International 91: 17-23.
  • Vandenberghe J (2003). Climate forcing of fluvial system development: an evolution of ideas. Quaternary Science Reviews 22: 2053- 2060.
  • Wallinga J (2002). Optically stimulated luminescence dating of fluvial deposits: a review. Boreas 31: 303-322.
  • Wegmann KW, Pazzaglia FJ (2009). Late Quaternary fluvial terraces of the Romagna and Marche Apennines, Italy: climatic, lithologic, and tectonic controls on terrace genesis in an active orogen. Quaternary Science Reviews 28: 137-165. doi: 10.1016/j. quascirev.2008.10.006
  • Westaway R (2012). A numerical modelling technique that can account for alternations of uplift and subsidence revealed by Late Cenozoic fluvial sequences. Geomorphology 165: 124-143.
  • Yaltırak C (2002). Tectonic evolution of the Marmara Sea and its surroundings. Marine Geology 190: 493-529.
  • Yaltirak C, Sakinç M, Aksu AE, Hiscott RN, Galleb B et al. (2002). Late Pleistocene uplift history along the southwestern Marmara Sea determined from raised coastal deposits and global sealevel variations. Marine Geology 190: 283-305.
  • Yaltırak C, Aksu AE, Hiscott RN (2014). Late Pleistocene uplift history along the Eastern Marmara Sea (Northern Armutlu Peninsula) determined from raised coastal deposits and global sea-level variations. In: Implications of Late Quaternary Sea Level Changes on the Eastern Mediterranean and Black Sea Coasts, International Workshop in the framework of TurkishGerman Science Year 2013–2014; İstanbul, Turkey.
  • Yanchilina AG, Ryan WBF, McManus JF, Dimitrov P, Dimitrov D et al. (2017). Compilation of geophysical, geochronological, and geochemical evidence indicates a rapid Mediterranean-derived submergence of the Black Sea’s shelf and subsequent substantial salinification in the early Holocene. Marine Geology 383: 14- 34. doi: 10.1016/j.margeo.2016.11.001
  • Yanchilina AG, Grall C, Ryan WBF, McManus JF, Major CO (2019). Lack of marine entry into Marmara and Black Sea-lakes indicate low relative sea level during MIS 3 in the northeastern Mediterranean. Climate of the Past Discussions. doi: 10.5194/ cp-2019-30
  • Yanina TA (2014). The Ponto-Caspian region: environmental consequences of climate change during the Late Pleistocene. Quaternary International 345: 88-99. doi: 10.1016/j. quaint.2014.01.045
  • Yıldırım C, Schildgen TF, Echtler H, Melnick D, Strecker MR (2011). Late Neogene and active orogenic uplift in the central Pontides associated with the north Anatolian Fault: implications for the northern margin of the central Anatolia plateau, Turkey. Tectonics 30: TC5005.
  • Yıldırım C, Melnick D, Ballato P, Schildgen TF, Echtler H et al. (2013). Differential uplift along the northern margin of the Central Anatolia Plateau: inferences from marine terraces. Quaternary Science Reviews 81: 12-28.
  • Yigitbaş E, Elmas A, Sefunç A, Özer N (2004). Major neotectonic features of eastern Marmara region, Turkey: Development of the Adapazari-Karasu corridor and its tectonic significance. Geological Journal 39: 179-198. doi: 10.1002/gj.962
  • Zabcı C (2019). Spatio-temporal behaviour of continental transform faults: Implications from the late quaternary slip history of the North Anatolian Fault, Turkey. Canadian Journal of Earth Sciences 56: 1218-1238. doi: 10.1139/cjes-2018-0308
  • Zhang JY, Liu-Zeng J, Scherler D, Yin A, Wang et al. (2018). Erratum: Spatiotemporal variation of late Quaternary river incision rates in southeast Tibet, constrained by dating fluvial terraces. Lithosphere 10: 676-676. doi: 10.1130/L686E.1