Bioerosional structures from the Late Pleistocene coral reef, Red Sea coast, northwest Saudi Arabia

Bioerosional structures from the Late Pleistocene coral reef, Red Sea coast, northwest Saudi Arabia

Herein, 20 ichnospecies belonging to 8 ichnogenera were identified in bivalves, gastropods, and corals (n = 701) from the Late Pleistocene coral reef along the Red Sea coast, northwest Saudi Arabia. The trace fossils were produced by clionid sponges (47.39%), endolithic bivalves (42.17%), polychaete annelids (5.42%), vermetid gastropods (3.81%), and acrothoracican barnacles (1.21%). The recognized ichnotaxa were Entobia geometrica, E. ovula, E. cf. goniodes, E. cf. retiformis, E. cretacea, Entobia isp., Gastrochaenolites torpedo, G. lapidicus, G. cf. dijugus, Gastrochaenolites isp., Oichnus paraboloides, O. simplex, Oichnus isp., Caulostrepsis taeniola, Caulostrepsis isp., Maeandropolydora cf. sulcans, Maeandropolydora isp., Renichnus isp., Centrichnus isp., and cf. Rogerella isp., Most bivalves and gastropods contain Entobia rather than Gastrochaenolites, which is commonly found in the larger and thicker corals. The content of the trace fossils indicated an Entobia ichnofacies formed in the coral reef during transgression. The habitat conditions changed gradually, from well-oxygenated, shallow, high-energy back-reef and reef crest bioeroding polychaetes and bivalves, to deep, low-energy reef slope dominated by boring sponges.

___

  • Abd El-Wahab M, El-Sorogy AS (2003). Scleractinian corals as pollution indicators, Red Sea coast, Egypt. Neues Jahrbuch für Geologie und Paläontologie Abhandlungen 11: 641-655.
  • Alharbi OM, Khattab RA, Ali I, Binnaser YS, Aqeel A (2018). Evaluation of the heavy metals threat to the Yanbu shoreline, Red Sea, Saudi Arabia. Marine and Freshwater Research 69 (10): 1557-1568.
  • Anan HS (1984). Littoral recent foraminifera from the Quseir– Mars Alam stretch of the Red Sea coast, Egypt. Revue de Paléobiologie 3: 235-242.
  • Bassant P (1999). The high-resolution stratigraphic architecture and evolution of the Burdigalian carbonate-siliciclastic sedimentary systems of the Mut Basin, Turkey. GeoFocus 3: 1-278.
  • Belaústegui Z, Muñiz F, Nebelsick ZH, Domènech R, Martinell J (2017). Echinoderm ichnology: bioturbation, bioerosion and related processes. Journal of Paleontology 91(4): 643-661.
  • Belaústegui Z, Domènech R, Martinell J (2018). An ichnofossilLagerstätte from the Miocene Vilanova basın (NE Spain): taphonomic and paleoecologic insights related to bioerosıon structures. Palaios 33 (1): 16-28.
  • Berry L, Whiteman AJ, Bell SV (1966). Some radiocarbon dates and their geomorphological significance: Emerged reef complex of Sudan. Z. Geomorphology 10: 119-143.
  • Blissett DJ, Pickerill RK (2004). Observations on bioerosional structures from the White Limestone Group of Jamaica. In: Donovan SK (editor). The Mid-Cainozoic White Limestone Group of Jamaica. Cainozoic Research 3: 167-187.
  • Brett CE (1985). Tremichnus: a new ichnogenus of circular-parabolic pits in fossil echinoderms. Journal of Paleontology 59: 625-635.
  • Bromley RG (1981). Concept in ichnotaxonomy illustrated by small round holes in shells. Acta Geologica Hispanica 16: 55-64.
  • Bromley RG (1992). Bioerosion: eating rocks for fun and profit. In: Maples CG, West RR (editors). Trace Fossils. Short Course in Paleontology 5: 121-129.
  • Bromley RG (1999). Anomiid (bivalve) bioerosion on Pleistocene pectinid (bivalve) shells, Rhodes, Greece. Geologie en Mijnbouw 78: 175-177.
  • Bromley RG, Asgaard U (1993a). Endolithic community replacement on a Pliocene rocky coast. Ichnos 2: 93-116.
  • Bromley RG, Asgaard U (1993b). Two bioerosion ichnofacies produced by early and late burial associated with sea-level changes. Geologische Rundschau 82: 276-280.
  • Bromley RG, D’Alessandro A (1983). Bioerosion in the Pleistocene of southern Italy: ichnogenera Caulostrepsis and Meandropolydora. Rivista Italiana di Paleontologia e Stratigrafia 89: 283-309.
  • Bromley RG, D’Alessandro A (1984). The ichnogenus Entobia from the Miocene, Pliocene and Pleistocene of southern Italy. Rivista Italiana di Paleontologia e Stratigrafia 90: 227-296.
  • Bromley RG, D’Alessandro A (1987). Bioerosion of the Pli – Pleistocene transgression of southern Italy. Rivista Italiana di Paleontologia e Stratigrafia 93: 379-422.
  • Bromley RG, Martinell J (1991). Centrichnus, new ichnogenus for centrically patterned attachment scars on skeletal substrates. Bulletin Geological Society Denmark 38: 243-252.
  • Bronn HG (1837). Lethaea geognostica: 2. Das Kreide- und Molassen–Gebirge enthaltend, Vol. 2. Stuttgart, Germany: E. Schweizerbart’sche Verlagsbuchhandlung, pp. 545-1350 (in German).
  • Claparède E (1868). Les Annélides Chétopodes du Golfe de Naples. Geneva, Switzerland: Ramboz et Schuchardt, p. 500 (in French).
  • Clarke JM (1908). The beginnings of dependent life. New York State Museum Bulletin 121: 146-196.
  • De Gibert JM, Martinell J, Domènech R (1998). Entobia ichnofacies in fossil rocky shores, Lower Pliocene, Northwestern Mediterranean. Palaios 13: 476-487.
  • De Gibert JM, Domènech R, Martinell J (2007). Bioerosion in shell beds from the Pliocene Roussillon Basin, France: Implications for the (macro) bioerosion ichnofacies model. Acta Palaeontologica Polonica 52 (4): 783-798.
  • Demircan H (2012). Determination of a Late Miocene rocky palaeoshore by bioerosion trace fossils from the Bozcaada Island, Çanakkale, Turkey. Comptes Rendus Palevol 11: 331-344.
  • De Saint-Seine R (1951). Un Cirripèdes acrothoraciques du Crétacé: Rogerella lecointrei nov. gen., nov. sp. Comptes Rendus de l’Académie des Sciences 233: 1051-1054.
  • Donovan SK, Jagt JWM (2013). Rogerella isp., infesting the pore pairs of Hemipneustes striatoradiatus (Leske) (Echinoidea: Upper Cretaceous, Belgium). Ichnos 20: 153-156.
  • Donovan SK, Hensley C (2006). Gastrochaenolites Leymeriein the Cenozoic of the Antillean region. Ichnos 13: 11-19.
  • Dullo W-Ch (1990). Facies, fossil record, and age of Pleistocene reefs from the Red Sea (Saudi Arabia). Facies 22: 1-46.
  • El Moursi M, Hoang CT, El Fayoumy IF, Hegab O, Faure H (1994). Pleistocene evolution of the Red Sea coastal plain, Egypt: evidence from uranium-series dating of emerged reef terraces. Quaternary Science Reviews 13: 345-359.
  • El-Hedeny M (2007). Ichnology of the Upper Cretaceous (Cenomanian–Campanian) sequence of western Sinai, Egypt. Egyptian Journal of Paleontology 7: 269-288.
  • EL-Hedeny M, El-Sabbagh A (2018). Entobia ichnofacies from the Middle Miocene carbonate succession of the northern Western Desert of Egypt. Annales Societatis Geologorum Poloniae 88: 1-19.
  • El-Sorogy AS (1997a). Progressive diagenetic sequence for Pleistocene coral reefs in the area between Quseir and Mersa Alam, Red Sea coast, Egypt. Egyptian Journal of Geology 41 (1): 519 -540.
  • El-Sorogy AS (1997b). Pleistocene coral reefs of southern Sinai, Egypt: Fossil record, facies analysis and diagenetic alterations. Middle East Research Center, Earth Science Series 11: 17-36.
  • El-Sorogy AS (2008). Contributions to the Pleistocene coral reefs of the Red Sea coast, Egypt. Arab Gulf Journal of Scientific Research 26 (1/2): 63-85.
  • El-Sorogy AS (2015). Taphonomic processes of some intertidal gastropod and bivalve shells from northern Red Sea coast, Egypt. Pakistan Journal of Zoology 47(5): 1287-1296.
  • El-Sorogy AS, Abdelwahab M, Nour HE (2012). Heavy metals contamination of the Quaternary coral reefs, Red Sea coast, Egypt. Environmental Earth Science 67: 777-785.
  • El-Sorogy AS, El Kammar A, Ziko A, Aly M, Nour H (2013a). Gastropod shells as pollution indicators, Red Sea coast, Egypt. Journal of African Earth Science 87: 93-99.
  • El-Sorogy AS, Nour H, Essa E, Tawfik M (2013b). Quaternary coral reefs of the Red Sea coast, Egypt: diagenetic sequence, isotopes and trace metals contamination. Arabian Journal Geoscience 6: 4981-4991.
  • El-Sorogy AS, Abdelwahab M, Ziko A, Shehata W (2015). Impact of some trace metals on bryozoan occurrences, Red Sea coast, Egypt. Indian Journal of Geo-Marine Science 45 (1): 86-99.
  • El-Sorogy AS, Alharbi T, Richiano S (2018). Bioerosion structures in high-salinity marine environments: a case study from the Al–Khafji coastline, Saudi Arabia. Estuarine, Coastal and Shelf Science 204: 264-272.
  • El-Sorogy AS, Youssef M, Al-Malky M (2019). Late Pleistocene reef fauna from the Red Seacoast, Northwest Saudi Arabia. Geological Journal 31: 1-11.
  • Fisher R (1990). Significado paleoecológico y geológico de perforaciones fósiles de bivalvos. Revista de la Sociedad Mexicana de Paleontologia 3: 79-95 (in Spanish).
  • Ghibaudo G, Grandesso P, Mas Sari F, Uchman A (1996). Use of trace fossils in delineating sequence stratigraphic surfaces (Tertiary Venetian basin, northeastern Italy). Palaeogeography, Palaeoclimatology, Palaeoecology 120: 261-279.
  • Glynn PW, Manzello DP (2015). Bioerosion and coral reef growth: a dynamic balance. In: Birkeland C (editor). Coral Reefs in the Anthropocene. Dordrecht, Netherlands: Springer, pp. 67-97.
  • Glynn, P.W. & Manzello, D.P. (2015). Bioerosion and coral reef growth:
  • Gurav SS, Kulkarni KG (2017). Natural casts of Early Eocene Entobia from the Kachchh Basin, India. Ichnos 25 (4): 261-268.
  • Gvirtzman G, Friedman GM (1977). Sequence of progressive diagenesis. American Association of Petroleum Geologists, Studies in Geology 4: 357-380.
  • Gvirtzman G, Kronfeld J, Buchbinder B (1992). Dated coral reefs of southern Sinai (Red Sea) and their implication to late Quaternary sea levels. Marine Geology 108: 29-37.
  • Hancock A (1849). On the excavating powers of certain sponges belonging to the genus Cliona with descriptions of several new species, and an allied generic form. Annals and Magazine of Natural History Series (2) 3 (17): 321-348.
  • Hancock A (1867). Note on the excavating sponges; with descriptions of four new species. Annals and Magazine of Natural History Series (3) 19 (112): 229-242
  • Hoang CT, Taviani M (1991). Stratigraphic and implications of uranium-series-dated coral reefs from uplifted Red Sea Islands. Quaternary Research 35: 264-663.
  • Hopner S, Bertling M (2017). Holes in bones: Iihnotaxonomy of bone borings. Ichnos 24 (4): 259-282.
  • Hötzl H (1984). Coastal region from Duba to Yanbu al Bahr; general topographical and geological considerations. In: Jado AR, Zotl IG (editors). Quarternary period of Saudi Arabia, Vol. 2. Berlin, Germany: Springer, pp. 60-66.
  • Johnson ME (2006). Uniformitarianism as a guide to rocky-shore ecosystems in the geological record. Canadian Journal Earth Sciences 43: 1119-1147.
  • Johnson ME, Gudveig Baarli B, Santos A, Eduardo M (2010). Ichnofacies and microbial build-ups on Late Miocene rocky shores from Menorca (Balearic Islands), Spain. Facies 57 (2): 255-265.
  • Kahal AY, El-Sorogy AS, Alfaifi H, Almadani S, Ghrefat HA (2018). Spatial distribution and ecological risk assessment of the coastal surface sediments from the Red Sea, northwest Saudi Arabia. Marine Pollution Bulletin 137: 198-208.
  • Kahal AY, El-Sorogy AS, Alfaifi HJ, Almadani S, Kassem OM (2020). Biofacies and diagenetic alterations of the Pleistocene coral reefs, northwest Red Sea coast, Saudi Arabia. Geological Journal 55 (2): 1380-1390.
  • Kelly SR, Bromley RG (1984). Ichnological nomenclature of clavate borings. Palaeontology 27: 793-807.
  • Knaust D (2012). Trace-fossil systematics. In: Knaust D, Bromley RG (editors). Trace Fossils as Indicators of Sedimentary Environments. Developments in Sedimentology, Vol. 64. Amsterdam, Netherlands: Elsevier, pp. 79-101.
  • Kowalewski M (1993). Morphometric analysis of predatory drillholes. Palaeogeography, Palaeoclimatology, Palaeoecology 102: 69-88.
  • Lescinsky HL, Ediger E, Risk MJ (2002). Mollusc shell encrustation and bioerosion rates in a modern epeiric sea: taphonomy experiments in the Java Sea, Indonesia. Palaios 17: 171-191.
  • Leymerie MA (1842). Suite des mémoire sur le terrain Crétacé du département de l’Aube. Mémories de la Société Géologique de France 5: 1-34 (in French).
  • Lopes RP (2011). Ichnology of fossil oysters (bivalvia, ostreidae) from the southern Brazilian coast. Gaea: Journal of Geoscience 7: 94-103.
  • Lorenzo N, Verde M (2004). Estructuras de bioerosión en moluscos marinos de la Formación Villa Soriano (Pleistoceno TardioHoloceno) de Uruguay. Revista Brasileira de Paleontologia 7 (3): 319-328 (in Spanish with English abstract).
  • Mathews RK (1984). Oxygen-isotope record of ice-volume history: 100 million years of glacio-eustatic sea-level fluctuation. In: Schlee JS (editor). Interregional unconformities and hydrocarbon accumulation. American Association of Petroleum Geologists Memoir 26: 97-107.
  • Mayoral E (1987). Accion bioerosiva de Mollusca (Gastropoda, Bivalvia) en el Plioceno Inferior de la Cuenca del Bajo Guadalquivir. Revista Espanola de Paleontologia 2: 49-58 (in Spanish with English abstract).
  • Mikuláš R (1992). Early Cretaceous borings from Štramberk (Czechoslovakia). Časopis pro mineralogii a geologii, 37: 297- 312 (in English with Czech abstract).
  • Mikuláš R, Pek I (1996). Trace fossils from the Roblín Member of the Srbsko Formation (Middle Devonian, Barrandian area, central Bohemia). Journal of the Czech Geological Society, 41: 79-84 (in English with Czech abstract).
  • Müller AH (1977). Zur Ichnologie der subherzynen Oberkreide (Campan). Zeitschrift für geologische Wissenschaften Berlin 5: 881-897 (in German).
  • Neumann AC (1966). Observations on coastal erosion in Bermuda and measurements of the boring rate of the sponge Cliona lampa. Limnology and Oceanography 11: 92-108.
  • Ostrovsky AN, Cáceres-Chamizo JP, Vávra N, Berning B (2011). Bryozoa of the Red Sea: history and current state of research. Annals of Bryozoology 3: 67-98.
  • Pan K, Lee OO, Qian PY, Wang WX (2011). Sponges and sediments as monitoring tools of metal contamination in the eastern coast of the Red Sea, Saudi Arabia. Marine Pollution Bulletin 62 (5): 1140-1146.
  • Parras A, Casadío S (2006). The oyster Crass ostrea? hatcheri (Ortmann, 1897), a physical ecosystem engineer from the Upper Oligocene-Lower Miocene of Patagonia, Southern Argentina. Palaios 21: 168-186.
  • Pickerill RK, Donovan SK (1998). Ichnology of the Pliocene Bowden shell bed, southeast Jamaica. Contributions to Tertiary and Quaternary Geology 35: 161-175.
  • Plaziat JC, Baltzer F, Choukri A, Conchon O, Freytet P et al. (1998). Quaternary marine and continental sedimentation in the northern Red Sea and Gulf of Suez (Egyptian coast): influences of rift tectonics, climate changes and sea-level fluctuations. In: Purser BH, Bosence DWJ (editors). Sedimentation and Tectonics of Rift Basins: Red Sea-Gulf of Aden. London, UK: Chapman & Hall, pp. 537-573.
  • Plaziat JC, Reyss JL, Choukri A, Cazala C (2008). Diagenetic rejuvenation of raised coral reefs and precision of dating: the contribution of the Red Sea reefs to the question of reliability of the Uranium-series dating’s of middle to late Pleistocene key reef-terraces of the world. Notebooks on Geology 4: 1-35.
  • Portlock JE (1843). Report on the Geology of the County of Londonderry and of Parts of Tyrone and Fermanagh. Dublin, Ireland: Andrew Milliken, p. 784.
  • Radwański A (1969). Lower Tortonian transgression onto the southernslopes of the Holy Cross Mts. Acta Geologica Polonica 19: 164-177 (in Polish).
  • Reyment RA (1999). Drilling gastropods. In: Savazzi E (editor). Functional Morphology of the Invertebrate Skeleton. New York, NY, USA: John Wiley & Sons, pp. 197-204.
  • Ridley SO (1881). Coelenterata. In: Günther A (editor). Account of the zoological collections made during the survey of H.M.S. Alert in the Straits of Magellan and on the coast of Patagonia. Proceedings of the Zoological Society of London: 101-107.
  • Ruiz-Compean P, Ellis J, Cúrdia J, Payumo R, Langner U et al. (2017). Baseline evaluation of sediment contamination in the shallow coastal areas of Saudi Arabian Red Sea. Marine Pollution Bulletin 123 (1-2): 205-218.
  • Saint-Seine R de (1951). Un cirripède acrothoracique du Crétacé: Rogerella lecointrei nov. gen., nov. sp. Comptes rendus de l’Académie des Sciences, Paris 233: 1051-1054 (in French).
  • Santos A, Mayoral E (2008). Bioerosion versus colonisation on Bivalvia: a case study from the Upper Miocene of Cacela (southeast Portugal). Geobios 41: 43-59.
  • Santos A, Mayoral E, Da Silva CM, Cachão M, Domènech R et al. (2008). Trace fossil assemblages on Miocene rocky shores of southern Iberia. In: Wisshak M, Tapanila L (editors). Current Developments in Bioerosion. Berlin, Germany: SpringerVerlag, pp. 431-450.
  • Santos A, Mayoral E, Bromley RG (2011). Bioerosive structures from Miocene marine mobile-substrate communities in southern Spain, and description of a new sponge boring. Palaeontology 54 (3): 535-545.
  • Stephenson LW (1952). Larger invertebrate fossils of the Woodbine Formation (Cenomanian) of Texas. United States Geological Survey Professional Paper 242: 1-226.
  • Strasser A, Strohmenger Chr, Davaud E, Bach A (1992). Sequential evolution and diagenesis of Pleistocene coral reefs (South Sinai, Egypt). Sedimentary Geology 78: 59-79.
  • Taviani M, Montagna P, Rasul NMA, Angeletti L, Bosworth W (2019). Pleistocene coral reef terraces on the Saudi Arabian side of the Gulf of Aqaba, Red Sea. In: Rasul NMA, Stewart ICF (editors). Geological Setting, Palaeoenvironment and Archaeology of the Red Sea. Cham, Switzerland: Springer Nature Switzerland AG, pp. 341-365.
  • Uchman A, Demircan H, Toker V, Derman AS, Sevim S et al. (2002). Relative sea-level changes recorded in borings from a Miocene rocky shore of the Mut Basin, southern Turkey. Annales Societatis Geologorum Poloniae 72: 263-270.
  • Uchman A, Kleemann K, Rattazzi B (2017). Macroborings, their tracemakers and nestlers in clasts of a fan delta: the Savignone Conglomerate (Lower Oligocene), Northern Apennines, Italy. Neues Jahrbuch für Geologie und Paläontologie Abhandlungen 283 (1): 35-51 (in English).
  • Vail PR, Hardenbol J, Todd RG (1984). Jurassic unconformities, Chronostratigraphy and sea-level changes from seismic stratigraphy and Biostratigraphy. In: Schlee JS (editor). Interregional Unconformities and Hydrocarbon accumulation, Vol. 36. American Association of Petroleum Geologists Memoir. Tulsa, OK, USA: American Association of Petroleum Geologists, pp. 129-144.
  • Voigt E (1965). Uber parasitische Polychaeten in Kreide-Austern sowie einige andere in Muschelschalen bohrende Würmer. Paläontologische Zeitschrift 39: 193-211 (in German).
  • Warme JE (1975). Borings as trace fossils and the processes of marine bioerosion. In: Frey RW (editor). The Study of Trace Fossils. New York, NY, USA: Springer-Verlag, pp. 181-227.
  • Wisshak M, Gektidis M, Freiwald A, Lundälv T (2005). Bioerosion alonga bathymetric gradient in a cold temperate setting (Kosterfjord, SW Sweden): an experimental study. Facies 51: 93-117.
  • Wisshak M, Knaust D, Bertling M (2019). Bioerosion IchnotaxaReview and Annotated List. Facies 65 (2): 24.
  • Youssef M, El-Sorogy AS, Osman M, Ghandour I, Manaa A (2020). Distribution and metal contamination in core sediments from the North Al-Wajh area, Red Sea, Saudi Arabia. Marine Pollution Bulletin 152: 110924.
  • Ziko A, El-Safori Y, El-Sorogy AS, Abd El Wahab M, El-Dera N et al. (2012). Bryozoa from northern Red Sea, Egypt: 1 Crisia (Cyclostomata). Historical Biology 24: 113-119.
  • Ziko A, El-Sorogy AS (1995). New bryozoan records from Pleistocene raised reefs, Red Sea coast, Egypt. MERC, Ain Shams University, Earth Science Series 9: 80-92.