Deep Structure of Central Menderes Massif: data from deep geothermal wells

Deep Structure of Central Menderes Massif: data from deep geothermal wells

The Menderes Massif is a major Alpide metamorphic complex in western Turkey; it is subdivided into southern, central, andnorthern submassifs by the east-west trending grabens. The basement of the southern Menderes Massif consists of Neoproterozoic micaschists (Selimiye Formation) intruded by Neoproterozoic granites. The basement is overlain by Permo-Carboniferous phyllite, marble, and quartzite (Göktepe Formation), which pass up into a thick sequence of Mesozoic marbles with emery horizons (Milas Marble).The marbles are overlain by latest Cretaceous recrystallized pelagic limestone and Paleocene metaclastics, which are thrusted over by theLycian nappes. The metamorphism and deformation of the Phanerozoic sequence of the Menderes Massif is Eocene in age. The structureof the central Menderes Massif is controversial with views ranging from an inverted metamorphic sequence to a pile of nappes. Here wereport the results from four deep (>3 km) geothermal wells from the central Menderes Massif. Two distinctive lithological units are differentiated in the wells. The top 0.5 to 1 km of the well sections are made up of micaschists, correlated with the Neoproterozoic SelimiyeFormation, whereas the lower parts of the wells have cut through graphite-bearing quartzite, phyllite, and marble regarded as being partsof the Göktepe Formation and Milas Marble. The lithological differences are also picked up by a magnetotelluric study, which shows asharp increase in the conductivity at the contacts of the Selimiye and Göktepe Formations. The question of whether the inversion of thestratigraphic sequence is due to thrusting or recumbent folding is still open.

___

  • Bozkurt E, Satir M. (2000). The southern Menderes Massif (western Turkey): geochronology and exhumation history. Geological Journal 35 (3‐4): 285-296.
  • Bozkurt E, Oberhänsli R. (2001). Menderes Massif (Western Turkey): structural, metamorphic and magmatic evolution–a synthesis. International Journal of Earth Sciences, 89 (4): 679-708.
  • Candan O, Dora O, Oberhänsli R, Çetinkaplan M, Partzsch J et al. (2001). Pan-African high-pressure metamorphism in the Precambrian basement of the Menderes Massif, western Anatolia,Turkey. International Journal of Earth Sciences 89 (4): 793-811.
  • Candan O, Dora ÖO, Oberhanslı R, Koralay E, Çetinkaplan M et al. (2011a). Stratigraphy of the pan - african basement of the menderes massif and the relationship with late neoproterozoic/ cambrian evolution of the gondwana. Bulletin of the Mineral Research and Exploration 142: 25-68.
  • Candan O, Oberhanslı R, Akal OÖ (2011b). Polymetamorphic evolution of the Pan-African Basement and Palaeozoic–Early tertiary cover series of the Menderes Massif. Bulletin of the Mineral Research and Exploration 142: 121-165.
  • Candan O, Koralay OE, Topuz G, Oberhänsli R, Fritz H, et al. (2016). Late Neoproterozoic gabbro emplacement followed by early Cambrian eclogite-facies metamorphism in the Menderes Massif (W. Turkey): implications on the final assembly of Gondwana. Gondwana Research 34: 158-173.
  • Craw D, Upton P (2014). Graphite reaction weakening of fault rocks, and uplift of the Annapurna Himal, central Nepal. Geosphere 10 (4): 720-731.
  • Çağlayan A, Öztürk EM, Öztürk S, Sav H, Akat U. (1980). Some new data on the southern part of the Menderes massif and a structural interpretation. Jeoloji Mühendisliği 10: 9-17 (article in Turkish with an English abstract).
  • Çiftçi NB, Bozkurt E (2009). Evolution of the Miocene sedimentary fill of the Gediz Graben, SW Turkey. Sedimentary Geology 216 (3-4): 49-79.
  • Dürr SH (1975). Über alter und geotektonische Stellung des Menderes-Kristallins, SW-Anatolien und seine Aequivalente in der mittleren Aegaeis. Habil.-Schr. Philipps-Univ. Marburg/Lahn (article in German).
  • Egbert GD (1997). Robust multiple-station magnetotelluric data rocessing. Geophysical Journal International 130 (2): 475-496.
  • Gessner K, Collins AS, Ring U, Güngör T (2004). Structural and thermal history of poly-orogenic basement: U–Pb geochronology of granitoid rocks in the southern Menderes Massif, Western Turkey. Journal of the Geological Society 161 (1): 93-101.
  • Gokten E, Havzoğlu T, Şan Ö (2001). Tertiary evolution of the central Menderes Massif based on structural investigations of metamorphics and sedimentary cover rocks between Salihli and Kiraz (western Turkey). International Journal of Earth Sciences 89 (4): 745-756.
  • Hasözbek A, Akay E, Erdoğan B, Satır M, Siebel W (2010). Early Miocene granite formation by detachment tectonics or not? A case study from the northern Menderes Massif (Western Turkey). Journal of Geodynamics 50 (2): 67-80.
  • Haizlip JR, Stover MM, Garg SK, Haklidir FT, Prina N (2016). Origin and impacts of high concentrations of carbon dioxide in geothermal fluids of western Turkey. In: Proceedings, 41st Workshop on Geothermal Reservoir Engineering Stanford University. Stanford, CA, USA. pp. 1302-1313.
  • Hetzel R, Reischmann T (1996). Intrusion age of Pan-African augen gneisses in the southern Menderes Massif and the age of cooling after Alpine ductile extensional deformation. Geological Magazine 133 (5), 565-572.
  • Hetzel R, Romer RL, Candan O, Passchier CW (1998). Geology of the Bozdag area, central Menderes massif, SW Turkey: PanAfrican basement and Alpine deformation. Geologische Rundschau 87 (3): 394-406.
  • Konak N (2002). Türkiye jeoloji haritası, İzmir paftası 1: 500 000. Maden Tetkik ve Arama Genel Müdürlüğü, Ankara (in Turkish).
  • Konak N. Şenel M (2002). Türkiye jeoloji haritası, Denizli paftası 1: 500 000. Maden Tetkik ve Arama Genel Müdürlüğü, Ankara (in Turkish).
  • Koralay OE (2001). Geology, geochemistry and geochrology of granitic and leucocratic ortogneisses at the eastern part of Ödemiş-Kiraz Submassif: Pan-African and Triassic magmatic activities. PhD, Dokuz Eylül University, İzmir, Turkey.
  • Koralay OE, Dora OÖ, Chen F, Satir M, Candan O (2004). Geochemistry and geochronology of orthogneisses in the Derbent (Alaşehir) area, eastern part of the Ödemiş-Kiraz submassif, Menderes Massif: Pan-African magmatic activity. Turkish Journal of Earth Sciences 13(1): 37-61.
  • Koralay OE, Candan O, Akal C, Dora OÖ, Chen F et al. (2011). The geology and geochronology of the pan-african and triassic metagranitoids in the menderes massif, western anatolia, turkey. Bulletin of the Mineral Research and Exploration 142: 69-121.
  • Koralay OE, Candan O, Chen F, Akal C, Oberhänsli R et al. (2012). Pan-African magmatism in the Menderes Massif: geochronological data from leucocratic tourmaline orthogneisses in western Turkey. International Journal of Earth Sciences 101 (8): 2055-2081.
  • Koralay OE (2015). Late Neoproterozoic granulite facies metamorphism in the Menderes Massif, Western Anatolia/Turkey: implication for the assembly of Gondwana. Geodinamica Acta 27 (4): 244-266.
  • Kuyumcu ÖC, Destegül Solaroğlu UZ, Hallinan S, Turkoglu E, Soyer W (2012). Interpretation of 3D Magnetotelluric (MT) surveys; basement conductors of the Menderes Massif, Western Turkey. In: International Geophysical Conference and Oil & Gas Exhibition; İstanbul, Turkey. pp. 1-4.
  • Lips AL, Cassard D, Sözbilir H, Yilmaz H, Wijbrans JR (2001). Multistage exhumation of the Menderes massif, western Anatolia (Turkey). International Journal of Earth Sciences 89 (4): 781- 792.
  • Loos S, Reischmann T (1999). The evolution of the southern Menderes Massif in SW Turkey as revealed by zircon dating. Journal of the Geological Society 156 (5): 1021-1030.
  • Manatschal G (1999). Fluid-and reaction-assisted low-angle normal faulting: evidence from rift-related brittle fault rocks in the Alps (Err Nappe, eastern Switzerland). Journal of Structural Geology 21 (7): 777-793.
  • Mackie RL, Madden TR, Wannamaker P (1993). ‘3-D Magnetotelluric Modeling Using Difference Equations – Theory and Comparisons to Integral Equation Solutions. Geophysics 58: 215-226.
  • McNeice GW, Jones AG (2001). Multisite, multifrequency tensor decomposition of magnetotelluric data. Geophysics 66 (1): 158- 173.
  • Oberhänsli R, Candan O, Dora OÖ, Dürr StH (1997). Eclogites within the Menderes massif/western Turkey. Lithos 41 (1-3): 135-150.
  • Okay AI (2001). Stratigraphic and metamorphic inversions in the central Menderes Massif: a new structural model. International Journal of Earth Sciences 89 (4): 709-727.
  • Oohashi K, Hirose T, Kobayashi K, Shimamoto T (2012). The occurrence of graphite-bearing fault rocks in the Atotsugawa fault system, Japan: Origins and implications for fault creep. Journal of Structural Geology 38: 39-50.
  • Önay TŞ (1949). Über die Smirgelgesteine Südwest-Anatoliens. Schweizerische Mineralogische und Petrographische Mitteilungen, 29: 357-492 (article in German).
  • Özer S (1998). Rudist bearing Upper Cretaceous metamorphic sequences of the Menderes Massif (Western Turkey). Geobios 31: 235-249.
  • Özer S, Sözbilir H, Özkar İ, Toker V, Sari, B (2001). Stratigraphy of Upper Cretaceous–Palaeogene sequences in the southern and eastern Menderes Massif (western Turkey). International Journal of Earth Sciences 89 (4): 852-866.
  • Özer S, Sözbilir H (2003). Presence and tectonic significance of Cretaceous rudist species in the so-called Permo-Carboniferous Göktepe Formation, central Menderes metamorphic massif, western Turkey. International Journal of Earth Sciences 92 (3): 397-404.
  • Ring U, Laws S, Bernet M (1999). Structural analysis of a complex nappe sequence and late-orogenic basins from the Aegean Island of Samos, Greece. Journal of Structural Geology 21 (11): 1575-1601.
  • Ritter O, Hoffmann-Rothe A, Bedrosian PA, Weckmann U, Haak V (2005). Electrical conductivity images of active and fossil fault zones. Geological Society, London, UK: Special Publications 245 (1): 165-186.
  • Santos FAM, Mateus A, Almeida EP, Pous J, Mendes Victor LA (2002). Are some of the deep crustal conductive features found in SW Iberia caused by graphite? Earth and Planetary Science Letters 201 (2): 353-367.
  • Schlumberger (2014). 3D Modelling of Magnetotelluric Data, Area 74 Alaşehir. Milan, Italy: Schlumberger, Integrated EM Center of Excellence.
  • Summers R, Byerlee J (1977). A note on the effect of fault gouge composition on the stability of frictional sliding. In: International Journal of Rock Mechanics and Mining Sciences and Geomechanics Abstracts 14 (3): 155-160.
  • Sunal G (2014). Alaşehir Güneyine (İzmir L20-B3 Paftasına) Dair Jeolojik Rapor. Özmen Holding, İstanbul (in Turkish).
  • Şengör AMC, Yilmaz Y (1981). Tethyan evolution of Turkey: a plate tectonic approach. Tectonophysics 75 (3-4): 181-241.
  • Şengör AMC, Satir M, Akkök R (1984). Timing of tectonic events in the Menderes Massif, western Turkey: Implications for tectonic evolution and evidence for Pan‐African basement in Turkey. Tectonics 3 (7): 693-707.
  • Whitney DL, Bozkurt, E (2002). Metamorphic history of the southern Menderes massif, western Turkey. Geological Society of America Bulletin 114 (7): 829-838.
  • Whitney DL, Teyssier C, Kruckenberg SC, Morgan VL, Iredale LJ (2008). High-pressure–low-temperature metamorphism of metasedimentary rocks, southern Menderes Massif, western Turkey. Lithos 101 (3-4): 218-232.