Petrological characteristics of the Middle Eocene Toveireh pluton (southwest of Jandaq, central Iran): implications for the eastern branch of the Neo-Tethys subduction

Petrological characteristics of the Middle Eocene Toveireh pluton (southwest of Jandaq, central Iran): implications for the eastern branch of the Neo-Tethys subduction

The Middle Eocene Toveireh plutonic body is located in the western margin of the Central-East Iranian Microcontinent(CEIM). This plutonic body consists of granodiorite, syenogranite, and monzogranite compositions. Granodiorite is the mostpredominant rock unit, which is composed of quartz, plagioclase, K-feldspar, hornblende, and biotite main mineral phases. TheToveireh pluton is metaluminous to weakly peraluminous (A/CNK = 0.85–1.04) and shows a calc-alkaline I-type affinity. Primitivemantle-normalized spidergrams show enrichment of large ion lithophile elements (Rb, Ba, Th, U) and light rare earth elements (REEs)(La/YbN = 6.8–8.24), as well as depletion of high-field strength elements (Nb, Ta, Ti, P). These rocks are characterized by unfractionatedheavy REEs [(Gd/Yb)N = 1.02–1.80] and a moderate negative Eu anomaly (Eu/Eu* = 0.39–0.77) in the chondrite-normalized REEpatterns. The geochemical data suggest that the Toveireh pluton was derived from a low degree of partial melting of a mixed source,primarily of mafic and metasedimentary rock, in the middle crust by underplating of mafic magma. Geochemical and petrologicalfeatures of the studied samples, such as a wide range of Mg# values (21.3–62.2, average: 35.6) and low amounts of mafic microgranularenclaves, indicated minor involvement of the mantle-derived magma components in the source and about 10% mixing with a felsicmelt. Magma chamber processes, including melting, assimilation, storage and homogenization, magma mixing, and assimilation andfractional crystallization, played an important role in the magmatic evolution. The hornblende thermobarometry yielded 720 °C to 840°C ± 23.5 °C and 0.6–1.4 ± 0.16 kbar for the granodiorites, and the biotite thermobarometry revealed 700 °C to 750 °C and 0.77–0.78kbar for the syenogranites. The combined results suggest that the studied rocks were crystallized in shallow crustal magma chambers.The Toveireh pluton was formed by the subduction of the eastern branch of Neo-Tethyan oceanic crust beneath the CEIM during theLate Triassic to Early Tertiary.

___

  • Agard P, Omrani J, Jolivet L, Whitechurch H, Vrielynck B et al. (2011). Zagros orogeny: a subduction‐dominated process. Geological Magazine 148: 692-725.
  • Ahmadian J, Haschke M, McDonald I, Regelous, M, Ghorbani M et al. (2009). High magmatic flux during Alpine-Himalayan collision: Constraints from the Kal-e-Kafi complex, central Iran. Geological Society of America Bulletin 121: 857-868.
  • Ahmadian J, Sarjoughian F, Lentz D, Esna-Ashari A, Muratad M et al. (2016). Eocene K-rich adakitic rocks in the central Iran: implications for evaluating its Cu–Au–Mo metallogenic potential. Ore Geology Reviews 72: 323-342.
  • Aistov L, Melnikov B, Krivyakin B, Morozov L (1984). Geology of the Khur Area (Central Iran), Explanatory Text of the Khur Quadrangle Map, 1:250,000, V/O Technoexport Report TE/ No. 20. Tehran, Iran: Geological Survey of Iran.
  • Altherr R, Holl A, Hegner E, Langer C, Kreuzer H (2000). Highpotassium, calcalkaline I-type plutonism in the European Variscides: northern Vosges (France) and northern Schwarzwald (Germany). Lithos 50: 51-73.
  • Anthony EY (2005). Source regions of granites and their links to tectonic environment: examples from the western United States. Lithos 80: 61-74.
  • Aysal N (2015). Mineral chemistry, crystallization conditions and geodynamic implications of Oligo-Miocene granitoids in the Biga Peninsula, Northwest Turkey. Journal of Asian Earth Sciences 105: 68-84.
  • Bagheri S, Stampfli GM (2008). The Anarak, Jandaq and Posht‐e‐ Badam metamorphic complexes in Central Iran: new geological data, relationships and tectonic implications. Tectonophysics 451:123-155.
  • Bakhshi M (2014). Mineral chemistry, petrogenesis and tectonomagmatic environment of Sohail-Pakuh granitoid body (north of Nain). MSC, University of Isfahan, Isfahan, Iran.
  • Barker SD (1970). Compositions of granophyre, myrmekite and graphic granite. Geological Society of America Bulletin 81: 3339-3350.
  • Barnes CG, Alien CM, Hoover JD, Brigham RH (1990). Magmatic components of a tilted plutonic system Klamath Mountains, California. Geological Society of America 174: 331-346.
  • Barnes SJ, Roeder PL (2001). The range of spinel compositions in terrestrial mafic and ultramafic rocks. Journal of Petrology 12: 2279-2302.
  • Berra F, Zanchi A, Angiolini L, Vachard D, Vezzoli G et al. (2017). The upper Palaeozoic Godar-e-Siah Complex of Jandaq: evidence and significance of a North Palaeotethyan succession in Central Iran. Journal of Asian Earth Sciences 138: 272-290.
  • Brown GC, Thorpe RS, Webb PC (1984). The geochemical characteristics of granitoids in contrasting arcs and comments on magma sources. Journal of the Geological Society of London 141: 413-426.
  • Cesare B (2000). Incongruent melting of biotite to spinel in a quartz-free restite at El Joyazo (SE Spain): textures and reaction characterization. Contributions to Mineralogy and Petrology 139: 273-284.
  • Chappell BW (1999). Aluminum saturation in I- and S-type granites and the characterization of fractionated haplogranites. Lithos 46: 535-551.
  • Chappell BW, White AJR (1992). I-type and S-type granites in the Lachlan fold belt. Transactions of the Royal Society of Edinburgh Earth Sciences 83: 1-26.
  • Chappell BW, White AJR (2001). Two contrasting granite types: 25 years later. Australian Journal of Earth Sciences 48: 489-499.
  • Chappell BW, White AJR, Wyborn D (1987). The importance of residual source material (restite) in granite petrogenesis. Journal of Petrology 28: 1111-1138.
  • Collerson KD, Kamber BS (1999). Evolution of the continents and the atmosphere inferred from Th-U-Nb systematics of the depleted mantle. Science 283: 1519-1522.
  • Coltorti M, Bonadiman C, Faccini B, Gregoire M, O’Reilly SY et al. (2007). Amphiboles from suprasubduction and intraplate lithospheric mantle. Lithos 99: 68-84.
  • Condie KC (1973). Archean magmatism and crustal thickening. Geological Society of America Bulletin 84: 2981-2992.
  • DePaolo DJ (1981). Trace element and isotopic effects of combined wall-rock assimilation and fractional crystallization. Earth and Planetary Science Letters 53: 189-202.
  • DePaolo DJ, Perry FV, Baldridge, WS (1992). Crustal versus mantle sources of granitic magmas: a two-parameter model based on Nd isotopic studies. Transactions of the Royal Society of Edinburgh Earth Sciences 83: 439-446.
  • Didier J (1973). Granites and Their Enclaves. Amsterdam, the Netherlands: Elsevier.
  • Didier J, Barbarin B (1991). Enclaves and Granite Petrology. Amsterdam, the Netherlands: Elsevier.
  • Ding T, Ma D, Lu J, Zhang R (2015). Apatite in granitoids related to polymetallic mineral deposits in southeastern Hunan Province, Shi-Hang zone, China: implications for petrogenesis and metallogenesis. Ore Geology Reviews 69: 104-117.
  • Drummond MS, Defant MJ, Kepezhinskas PK (1996). Petrogenesis of slab derived trondhjemite-tonalite-dacite/adakite magmas. Transactions of the Royal Society of Edinburgh Earth Sciences 87: 205-215.
  • Elmas A, Koralay E, Duru O, Schmidt A (2016). Geochronology, geochemistry, and tectonic setting of the Oligocene magmatic rocks (Marmaros Magmatic Assemblage) in Gökçeada Island, northwest Turkey. International Geology Review 59: 420-447.
  • Foley S (2008). A trace element perspective on Archean crust formation and on the presence or absence of Archean subduction. In: Condie KC, Pease V (editors). When Did Plate Tectonics Begin? Boulder, CO, USA: Geological Society of America, pp. 31-50.
  • Foster MD (1960). Interpretation of the Composition of the Trioctahedral Micas. United States Geological Survey Professional Paper 354-B. Reston, VA, USA: US Geological Survey.
  • Frost BR, Barnes CG, Collins WJ, Arculus RJ, Ellis DJ et al. (2001). A geochemical classification for granitic rocks. Journal of Petrology 42: 2033-2048.
  • Frost CD, Frost BR (1997). Reduced rapakivi-type granites: the tholeiite connection. Geology 25: 647-650.
  • Godard G (1990). Decouverte d’eclogites, de peridotites a apinelle et d’amphibolites a anorthite, spinelle et corundon dans lc Morvan. Comptes Rendus de l’Académie des Sciences Série II (Paris) 310: 227-232 (in French).
  • Green TH (1995). Significance of Nb/Ta as an indicator of geochemical processes in the crust-mantle system. Chemical Geology 120: 347-359.
  • Green TH, Pearson NJ (1986). Ti-rich accessory phase saturation in hydrous mafic-felsic compositions at high P, T. Chemical Geology 54: 185-201.
  • Hammarstrom JM, Zen E (1986). Aluminum in hornblende: an empirical igneous geobarometer. American Mineralogist 71: 1297-1313.
  • Harris N (1981). The application of spinel-bearing metapelites to P/T determinations: an example from south India. Contributions to Mineralogy and Petrology 76: 229-233.
  • Harrison TM, Watson EB (1984). The behavior of apatite during crustal anatexis: equilibrium and kinetic considerations. Geochimica et Cosmochimica Acta 48: 1467-1477.
  • Hawkesworth C, Dhuime B, Pietranik AB, Cawood PA, Kemp AJ et al. (2010). The generation and evolution of the continental crust. Journal of the Geological Society 167: 229-248.
  • Henry DJ, Guidotti CV, Thomson JA (2005) The Ti saturation surface for low-to-medium pressure metapelitic biotites: implications for geothermometry and Ti-substitution mechanisms. American Mineralogist 90: 316-328.
  • Hildreth W, Moorbath S (1988). Crustal contributions to arc magmatism in the Andes of central Chile. Contributions to Mineralogy and Petrology 98: 455-489.
  • Hoffmann JE, Münker C, Naeraa T, Rosing MT, Herwartz D et al. (2011). Mechanisms of Archean crust formation inferred from high-precision HFSE systematics in TTGs. Geochimica et Cosmochimica Acta 75: 4157-4178.
  • Huang HQ, Li XH, Li ZX (2013). Intraplate crustal remelting as the genesis of Jurassic high-K granites in the coastal region of the Guangdong Province, SE China. Journal of Asian Earth Sciences 74: 280-302.
  • Kemp AIS, Hawkesworth CJ, Foster GL, Paterson BA, Woodhead JD et al. (2007). Magmatic and crustal differentiation history of granitic rocks from Hf-O isotopes in zircon. Science 315: 980- 983.
  • Klein M, Stosch HH, Seck HA (1997). Partitioning of high field-strength and rare-earth elements between amphibole and quartz-dioritic melts: an experimental study. Chemical Geology 138: 257-271.
  • Labanieh S, Chauvel C, Germa A, Quidelleur X (2012). Martinique: a clear case for sediment melting and slab dehydration as a function of distance to the trench. Journal of Petrology 53: 2441-2464.
  • Leake EB, Wooley AR, Arps CES, Birch WD, Gilbert MC et al. (1997). Nomenclature of amphiboles report of the subcommittee on amphiboles of the International Mineralogical Association Commission on New Minerals and Mineral Names. European Journal of Mineralogy 9: 623-651.
  • Liu L, Qiu JS, Li Z (2013). Origin of mafic microgranular enclaves (MMEs) and their host quartz monzonites from the Muchen pluton in Zhejiang Province, southeast China: implications for magma mixing and crust-mantle interaction. Lithos 160-161: 145-163.
  • Ma X, Meert JG, Xu Z, Zhao Z (2017). Evidence of magma mixing identified in the Early Eocene Caina pluton from the Gangdese Batholith, southern Tibet. Lithos 278-281: 126-139.
  • Martin H (1986). Effect of steeper Archean geothermal gradient on geochemistry of subduction-zone magmas. Geology 14: 753- 756.
  • Martin H, Smithies RH, Rapp R, Moyen JF, Champion D (2005). An overview of adakite, tonalite-trondhjemite-granodiorite (TTG), and sanukitoid: relationships and some implications for crustal evolution. Lithos 79: 1-24.
  • McKay GA (1989). Partitioning of rare earth elements between major silicate minerals and basaltic melts. Reviews in Mineralogy and Geochemistry 21: 45-77.
  • Middlemost EAK (1994). Naming materials in the magma/igneous rock system. Earth-Science Reviews 37: 215-224.
  • Miskovic A, Francis D (2006). Interaction between mantle-derived and crustal calcalkaline magmas in the petrogenesis of the Paleocene Sifton range volcanic complex, Yukon, Canada. Lithos 87: 104-134.
  • Montel J, Didier J, Pichavant M (1991). Origin of surmicaceous enclaves in intrusive granites. In: Didier J, Barbarin B (editors). Enclaves and Granite Petrology. Amsterdam, the Netherlands: Elsevier, pp. 509-528.
  • Montel JM, Weber C, Pichavant M (1986). Biotite-sillimanite- spinel assemblages in high-grade metamorphic rocks: occurrences, chemographic analysis and thermobarometric interest. Bulletin de Mineralogie 109: 555-573.
  • Morata D, Oliva C, de la Cruz R, Suarez M (2005). The Bandurrias Gabbro; late Oligocene alkaline magmatism in the Patagonian Cordillera. Journal of South American Earth Sciences 18: 147- 162 .
  • Motaghi K, Tatar M, Priestley K, Romanelli F, Doglioni C et al. (2015). The deep structure of the Iranian Plateau. Gondwana Research 28: 407-418.
  • Nachit H, Ibhi A, Abia EH, Ohoud MB (2005). Discrimination between primary magmatic biotites reequilibrated biotites and neoformed biotites. Copmtes Rendus Geoscience 337: 1415- 1420.
  • Nazemei M, Arvin M, Dargahi S (2018). Geochemistry and source characteristics of Dehsard mafic volcanic rocks in the southeast of the Sanandaj-Sirjan zone, Iran: implications for the evolution of the Neo-Tethys Ocean. Turkish J Earth Sci 27: 249-268.
  • Nedelec A, Bouchez JL (2015). Granites: Petrology, Structure, Geological Setting and Metallogeny. Oxford, UK: Oxford University.
  • Nesbitt HW, Young GM (1982). Early Proterozoic climates and plate motions inferred from major element chemistry of lutites. Nature 299: 715-717.
  • Patiño Douce AE (1999). What do experiments tell us about the relative contributions of crust and mantle to the origin of granitic magmas? In: Castro A, Fernandez C, Vigneressese JL (editors). Understanding Granites: Integrating New and Classical Techniques. London, UK: Geological Society of London, pp. 55-75.
  • Pearce JA, Bender JF, De Long SE, Kidd WSF, Low PJ et al. (1990). Genesis of collision volcanism in Eastern Anatolia, Turkey. Journal of Volcanology and Geothermal Research 44: 189-229.
  • Pearce JA, Harris NW, Tindle AG (1984). Trace element discrimination diagrams for the tectonic interpretation of granitic rocks. Journal of Petrology 25: 956-983.
  • Planck T (2005). Constraints from Thorium/Lanthanum on sediment recycling at subduction zones and the evolution of the continents. Journal of Petrology 46: 921-944.
  • Poidevin JL (1994). Boninite-like rocks from the Palaeoproterozoic greenstone belt of Bogoin, Central African Republic: geochemistry and petrogenesis. Precambrian Research 68: 97- 113.
  • Rajabi S, Torabi G, Arai S (2014). Oligocene crustal xenolith-bearing alkaline basalt from Jandaq area (Central Iran): implications for magma genesis and crustal nature. Island Arc 23: 125-141.
  • Rapp RP, Watson EB (1995). Dehydration melting of metabasalt at 8-32 kbar: implications for continental growth and crustmantle recycling. Journal of Petrology 36: 891-931.
  • Ridolfi F, Renzulli A, Puerini M (2010). Stability and chemical equilibrium of amphibole in calc-alkaline magmas: an overview, new thermobarometric formulations and application to subduction-related volcanoes. Contributions to Mineralogy and Petrology 160: 45-66.
  • Rollinson HR (1993). Using Geochemical Data: Evaluation, Presentation, Interpretation. London, UK: Longman Scientific and Technical.
  • Rudnick RL, Gao S (2003). The composition of the continental crust. In: Holland HD, Turekian KK, Rudnick RL (editors). Treatise on Geochemistry. 2nd ed. Oxford, UK: Elsevier, pp. 1-64.
  • Sargazi M, Torabi G (2019). Petrography and mineral chemistry of the Eocene granodiorites in the Toveireh area (Southwest of Jandaq, Isfahan province). Journal of Economic Geology 10: 449-470 (in Persian).
  • Sarjoughian F, Kananian A, Haschke M, Ahmadian J, Ling W et al. (2012). Magma mingling and hybridization in the Kuh-e-Dom pluton, central Iran. Journal of Asian Earth Sciences 54-55: 49-63.
  • Schiano P, Monzier M, Eissen JP, Martin H, Koga KT (2010). Simple mixing as the major control of the evolution of volcanic suites in the Ecuadorian Andes. Contributions to Mineralogy and Petrology 160: 97-312.
  • Schmidt MW (1992). Amphibole composition in tonalite as a function of pressure an experimental calibration of the Al-hornblende barometer. Contributions to Mineralogy and Petrology 110: 304-310.
  • Schollenbruch K, Woodland AB, Frost DJ (2010). The stability of hercynite at high pressures and temperatures. Physics and Chemistry of Minerals 37: 137-143.
  • Shand SJ (1943). Eruptive Rocks: Their Genesis, Composition, Classification and Their Relations to Ore Deposits. 2nd ed. New York, NY, USA: Wiley.
  • Shirdashtzadeh N, Torabi G, Arai S (2009). Metamorphism and metasomatism in the Jurassic of Nain ophiolithic mélange, Central Iran. Neues Jahrbuch fur Geologie und Palaeontologie - Abhandlungen 255: 255-275.
  • Shirdashtzadeh N, Torabi G, Meisel T, Arai S, Bokhari SNH et al. (2014). Origin and evolution of metamorphosed mantle peridotites of Darreh Deh (Nain Ophiolite, central Iran): implications for the eastern Neo-Tethys evolution. Neues Jahrbuch für Geologie und Paläontologie - Abhandlungen 273: 89-120.
  • Słaby E, Gotze J (2004). Feldspar crystallization under magma-mixing conditions shown by cathodoluminescence and geochemical modeling - a case study from the Karkonosze pluton (SW Poland). Mineralogical Magazine 68: 561-577.
  • Smithies RH (2000). The Archaean tonalite-trondhjemite-granodiorite (TTG) series is not an analogue of Cenozoic adakite. Earth and Planetary Science Letters 182: 115-125.
  • Stern CR, Kilian R (1996). Role of the subducted slab, mantle wedge and continental crust in the generation of adakites from the Andean Austral volcanic zone. Contributions to Mineralogy and Petrology 123 (3): 263-281.
  • Stöcklin J (1968). Structural history and tectonics of Iran, a review. Geological Society of America Bulletin 52: 1229-1258.
  • Sun SS, McDonough WF (1989) Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. Geological Society of London Special Publications 42: 313-345.
  • Sylvester PJ (1998). Post-collisional strongly peraluminous granites. Lithos 45: 29-44.
  • Tadayon M, Rossetti F, Zattin M, Nozaem R, Calzolari G et al. (2017). The post-Eocene evolution of the Doruneh Fault region (Central Iran): the intraplate response to the reorganization of the ArabiaEurasia collision zone. Tectonics 36: 3038-3064.
  • Taylor RW (1964). Phase equilibria in the system FeO-Fe2 O3 -TiO2 at 1300°C. American Mineralogist 49: 1016-1030.
  • Taylor SR, McLennan SM (1985). The Continental Crust: Its Compositions and Evolution. Oxford, UK: Blackwell.
  • Thornton CP, Tuttle OF (1960). Chemistry of igneous rocks, Part 1: Differentiation index. American Journal of Science 280: 664- 684.
  • Torabi G (2010). Early Oligocene alkaline lamprophyric dykes from the Jandaq area (Isfahan Province, Central Iran): evidence of Central-East Iranian microcontinent confining oceanic crust subduction. Island Arc 19: 277-291.
  • Uchida E, Endo S, Makino M (2007). Relationship between solidification depth of granitic rocks and formation of hydrothermal ore deposits. Resource Geology 57: 47-56.
  • Walker BA, Bergantz GW, Otamendi JE, Ducea MN, Cristofolini EA (2015). A MASH zone revealed: the mafic complex of the Sierra Valle Fértil. Journal of Petrology 56: 1863-1896.
  • Walker R, Jackson J (2004). Active tectonics and late Cenozoic strain distribution in central and eastern Iran. Tectonics 23: 1-24.
  • Watson EB, Wark DA, Thomas JB (2006). Crystallization thermometers for zircon and rutile. Contributions to Mineralogy and Petrology 151: 413-433.
  • Weissman A, Kessel R, Navon O, Stein M (2013). The petrogenesis of calc-alkaline granites from the Elat massif, Northern ArabianNubian shield. Precambrian Research 236: 252-264.
  • Whalen JB, Currie KL, Chappell BW (1987). A-type granites: geochemical characteristics, discrimination and petrogenesis. Contributions to Mineralogy and Petrology 95: 407-419.
  • Whitney DL, Evans BW (2010). Abbreviation for names of rockforming minerals. American Mineralogist 95: 185-187.
  • Wolska A (2004). High-temperature restite enclave as an evidence of deep seated parent magma melting of the Będkowska Valley granodirite (Silesian-Cracow area, south Poland) - preliminary petrographic and mineralogical study. Journal of the Polish Geological Society 74: 21-33.
  • Wones DR (1989). Significance of the assemblage titanite +magnetite +quartz in granitic rocks. American Mineralogist 74: 744-749.
  • Xiao B, Li QG, Liu SW, Wang ZQ, Yang PT et al. (2014). Highly fractionated Late Triassic I-type granites and related molybdenum mineralization in the Qinling orogenic belt: geochemical and U-Pb-Hf and Re-Os isotope constraints. Ore Geology 56: 220-233.
  • Yang SY, Jiang SY, Zhao KD, Jiang YH (2013). Petrogenesis and tectonic significance of Early Cretaceous high-Zr rhyolite in the Dazhou uranium district, Gan-Hang Belt, Southeast China. Journal of Asian Earth Sciences 74: 303-315.
  • Yoshino T, Okudaira T (2005). Crustal growth by magmatic accretion constrained by metamorphic P-T paths and thermal models of the Kohistan Arc, NW Himalayas. Journal of Petrology 45: 2287-2302.
  • Yu M, Feng CY, Zhao YM, Li DX (2015). Genesis of post-collisional calc-alkaline and alkaline granitoids in Qiman Tagh, East Kunlun, China. Lithos 239: 45-59.
  • Zaraisky GP, Aksyuk AM, Devyatova VN, Udoratina OV, Chevychelov VY (2009). The Zr/Hf ratio as a fractionation indicator of rare-metal granites. Petrology 17: 25-45.
  • Zen E (1988). Phase relations of peraluminous granitic rocks and their petrogenetic implications. Annual Review of Earth and Planetary Sciences 16: 21-52.