Combined qualitative and quantitative regional interpretation of the thermal results of magnetic data in the Eastern Mediterranean Region

Combined qualitative and quantitative regional interpretation of the thermal results of magnetic data in the Eastern Mediterranean Region

The study presents thermal structure and active-passive tectonic parts of the Eastern Mediterranean Region. Curie point depth, heat flow map, Moho depth and sediment thickness are used for interpretation. The levelled magnetic data that obtained from the World Digital Magnetic Anomaly Map (WDMAM) is used. The magnetic anomaly is divided into 39 zones for Curie point depth estimation. The Curie point depth values are calculated into Fourier domain. Then heat flow map is generated. The estimated Curie point depth values are ranging from 4.5 km to 25 km. Furthermore, heat flow values are between 55 mW/m2 and 277 mW/m2 . Moho depth, Moho depth-Curie depth and sediment thickness are used for constraining interpretation. Interpretation indicates that the northern and southern parts of the Mediterranean Ridge present different thermal characteristics.

___

  • Airy GB (1855). III. On the computation of the effect of the attraction of mountain-masses, as disturbing the apparent astronomical latitude of stations in geodetic surveys. Philosophical Transactions of the Royal Society of London 145: 101-104. doi: 10.1098/rstl.1855.0003
  • Ateş A, Bilim F, Büyüksaraç A (2005). Curie point depth investigation of Central Anatolia, Turkey. Pure and Applied Geophysics 162 (2): 357-371. doi: 10.1007/s00024-004-2605-3
  • Ateş A, Bilim F, Büyüksaraç A, Aydemir A, Bektas O et al. (2012). Crustal structure of Turkey from aeromagnetic, gravity and deep seismic reflection data. Surveys in geophysics 33 (5): 869-885.
  • Aydemir A, Bilim F, Çifçi G, Okay S (2018). Modeling of the FocaUzunada magnetic anomaly and thermal structure in the gulf of Izmir, western Turkey. Journal of Asian Earth Sciences 156: 288- 301.
  • Aydemir A, Bilim F, Kosaroglu S, Büyüksaraç A (2019). Thermal structure of the Cappadocia region, Turkey: a review with geophysical methods. Mediterranean Geoscience Reviews 1 (2): 243-254.
  • Aydın İ, Karat Hİ, Koçak A (2005). Curie-point depth map of Turkey. Geophysical Journal International 162 (2): 633-640. doi: 10.1111/j.1365-246X.2005.02617.x
  • Bansal AR, Gabriel G, Dimri VP, Krawczyk CM (2011). Estimation of depth to the bottom of magnetic sources by a modified centroid method for fractal distribution of sources: an application to aeromagnetic data in Germany. Geophysics 76 (3): L11-L22. doi: 10.1190/1.3560017
  • Ben‐Avraham Z, Ginzburg A (1990). Displaced terranes and crustal evolution of the Levant and the eastern Mediterranean. Tectonics 9 (4): 613-622. doi: 10.1029/TC009i004p00613
  • Ben-Avraham Z (1978). The structure and tectonic setting of the Levant continental margin, Eastern Mediterranean. Tectonophysics 46 (3- 4): 313-331. doi: 10.1016/0040-1951(78)90210-X
  • Ben-Avraham Z, Ginzburg A, Makris J, Eppelbaum, L (2002). Crustal structure of the Levant Basin, eastern Mediterranean. Tectonophysics 346 (1-2): 23-43. doi: 10.1016/S0040- 1951(01)00226-8
  • Bhattacharyya BK, Leu LK (1975). Analysis of magnetic anomalies over Yellowstone National Park: mapping of Curie point isothermal surface for geothermal reconnaissance. Journal of Geophysical Research 80 (32): 4461-4465. doi: 10.1029/JB080i032p04461
  • Bilim F (2011). Investigation of the Galatian volcanic complex in the northern central Turkey using potential field data. Physics of the Earth and Planetary Interiors 185 (1-2): 36-43. doi: 10.1016/j.pepi.2011.01.001
  • Bilim F, Akay T, Aydemir A, Kosaroglu S (2016). Curie point depth, heat-flow and radiogenic heat production deduced from the spectral analysis of the aeromagnetic data for geothermal investigation on the Menderes Massif and the Aegean Region, western Turkey. Geothermics 60: 44-57. doi: 10.1016/j.geothermics.2015.12.002
  • Bilim F, Kosaroglu S, Aydemir A, Buyuksarac A (2017). Thermal investigation in the Cappadocia region, Central Anatolia-Turkey, analyzing curie point depth, geothermal gradient, and heat-flow maps from the aeromagnetic data. Pure and Applied Geophysics 174 (12): 4445-4458. doi: 10.1007/s00024-017-1666-z
  • Blakely RJ (1996). Potential Theory in Gravity and Magnetic Applications. 1st ed. New York, USA: Cambridge University Press.
  • Bouligand C, Glen JM, Blakely RJ (2009). Mapping Curie temperature depth in the western United States with a fractal model for crustal magnetization. Journal of Geophysical Research: Solid Earth 114 (B11): 1-25. doi: 10.1029/2009JB006494
  • Brocher TM (2005). Empirical relations between elastic wavespeeds and density in the Earth's crust. Bulletin of the Seismological Society of America 95 (6): 2081-2092. doi: 10.1785/0120050077
  • Buddington AF, Lindsley DH (1964). Iron-titanium oxide minerals and synthetic equivalents. Journal of Petrology 5 (2): 310-357. doi: 10.1093/petrology/5.2.310
  • Butler RW, Lickorish WH, Grasso M, Pedley HM, Ramberti L (1995). Tectonics and sequence stratigraphy in Messinian basins, Sicily: constraints on the initiation and termination of the Mediterranean salinity crisis. Geological Society of America Bulletin 107 (4): 425- 439. doi: 10.1130/00167606
  • Caméra L, Ribodetti A, Mascle J (2010). Deep structures and seismic stratigraphy of the Egyptian continental margin from multichannel seismic data. Geological Society, London, Special Publications 341 (1): 85-97. doi: 10.1144/SP341.5
  • Carrillo-de la Cruz JL, Prol-Ledesma RM, Velázquez-Sánchez P, GómezRodríguez D (2020). MAGCPD: a MATLAB-based GUI to Calculate the Curie Point-Depth Involving the Spectral Analysis of Aeromagnetic Data. Earth Science Informatics 13 (4): 1539-1550. doi: 10.1007/s12145-020-00525-x
  • Catalano R, Di Stefano P, Kozur H (1991). Permian Circumpacific DeepWater Faunas from the Western Tethys (Sicily, Italy)—New Evidences for the Position of the Permian Tethys. Palaeogeography, Palaeoclimatology, Palaeoecology 87 (1-4): 75- 108. doi: 10.1016/0031-0182(91)90131-A
  • Collin PY, Mancinelli A, Chiocchini M, Mroueh M, Hamdam W et al. (2010). Middle and Upper Jurassic Stratigraphy and Sedimentary Evolution of Lebanon (Levantine Margin): Palaeoenvironmental and Geodynamic Implications. Geological Society, London, Special Publications 341 (1): 227-244. doi: 10.1144/SP341.11
  • Connard G, Couch R, Gemperle M (1983). Analysis of Aeromagnetic Measurements from the Cascade Range in Central Oregon. Geophysics 48 (3): 376-390. doi: 10.1190/1.1441476
  • Dewey JF, Şengör AC (1979). Aegean and surrounding regions: complex multiplate and continuum tectonics in a convergent zone. Geological Society of America Bulletin 90 (1): 84-92. doi: 10.1130/0016-7606(1979)90<84:AASRCM>2.0.CO;2
  • Dewey JF (1988). Extensional Collapse of Orogens. Tectonics 7 (6): 1123- 1139. doi: 10.1029/TC007i006p01123
  • Dewey JF, Hempton MR, Kidd WSF, Saroglu FAMC, Şengör AMC (1986). Shortening of Continental Lithosphere: The Neotectonics of Eastern Anatolia—A Young Collision Zone. Geological Society, London, Special Publications 19 (1): 1-36. doi: 10.1144/GSL.SP.1986.019.01.01
  • Divins D L (2003). Total Sediment Thickness of the World’s Oceans and Marginal Seas: Boulder, Colorado, National Oceanic and Atmospheric Administration National Geophysical Data Center.
  • Dolmaz MN, Hisarlı ZM, Ustaömer T, Orbay N (2005a). Curie point depths based on spectrum analysis of aeromagnetic data, West Anatolian extensional province, Turkey. Pure and Applied Geophysics, 162 (3): 571-590. doi: 10.1007/s00024-004-2622-2
  • Dolmaz MN, Ustaömer T, Hisarlı ZM, Orbay N. (2005b). Curie point depth variations to infer thermal structure of the crust at the African-Eurasian convergence zone, SW Turkey. Earth, Planets and Space 57 (5): 373-383. doi: 10.1186/BF03351821
  • Elbarbary S, Zaher MA, Mesbah H, El-Shahat A, Embaby A (2018). Curie point depth, heat flow and geothermal gradient maps of Egypt deduced from aeromagnetic data. Renewable and Sustainable Energy Reviews 91: 620-629. doi: 10.1016/j.rser.2018.04.071
  • Erbek E, Dolmaz MN (2019). Investigation of the thermal structure and radiogenic heat production through aeromagnetic data for the southeastern Aegean Sea and western part of Turkey. Geothermics 81: 113-122. doi: 10.1016/j.geothermics.2019.04.011
  • Farr TG, Kobrick M (2000). Shuttle Radar Topography Mission Produces a Wealth of Data. Eos, Transactions American Geophysical Union 81 (48): 583-585. doi: 10.1029/EO081i048p00583
  • Flecker R, Krijgsman W, Capella W, De Castro Martíns C. Dmitrieva E et al. (2015). Evolution of the Late Miocene Mediterranean– Atlantic gateways and their impact on regional and global environmental change. Earth-Science Reviews 150: 365-392. doi: 10.1016/j.epsl.2017.01.029
  • Fourier J (1878). The analytical theory of heat. The University Press.
  • Frizon de Lamotte D, Tavakoli-Shirazi S, Leturmy P, Averbuch O, Mouchot N et al. (2013). Evidence for Late Devonian Vertical Movements and Extensional Deformation in Northern Africa and Arabia: Integration in the Geodynamics of the Devonian World. Tectonics 32(2):107-122. doi: 10.1002/tect.20007
  • Gardosh MA, Druckman Y (2006). Seismic Stratigraphy, Structure and Tectonic Evolution of the Levantine Basin, Offshore Israel.
  • Geological Society, London, Special Publications 260 (1): 201-227. doi: 10.1144/GSL.SP.2006.260.01.09
  • Gardosh MA, Garfunkel Z, Druckman Y, Buchbinder B (2010). Tethyan Rifting in the Levant Region and Its Role in Early Mesozoic Crustal Evolution. Geological Society, London, Special Publications, 341 (1): 9-36. doi: 10.1144/SP341.2
  • Garfunkel Z, Derin B (1984). Permian-Early Mesozoic Tectonism and Continental Margin Formation in Israel and Its Implications for the History of the Eastern Mediterranean. Geological Society, London, Special Publications 17 (1): 187-201. doi: 10.1144/GSL.SP.1984.017.01.12
  • Garfunkel Z (1998). Constrains on the Origin and History of the Eastern Mediterranean Basin. Tectonophysics 298 (1-3): 5-35. doi: 10.1016/S0040-1951(98)00176-0
  • Garfunkel Z (2004). Origin of the Eastern Mediterranean Basin: A Reevaluation. Tectonophysics 391 (1-4): 11-34. doi: 10.1016/j.tecto.2004.07.006
  • Gasparini P, Mantovani MSM, Corrado G, Rapolla A (1979). Depth of Curie Temperature in Continental Shields: A Compositional Boundary. Nature 278 (5707): 845-846. doi: 10.1038/278845a0
  • Goldsworthy M, Jackson J, Haines J (2002). The continuity of active fault systems in Greece. Geophysical Journal International 148 (3): 596- 618. doi: 10.1046/j.1365-246X.2002.01609.x
  • Gönenç T, Akgün M (2012). Structure of the Hellenic subduction zone from gravity gradient functions and seismology. Pure and Applied Geophysics 169 (7): 1231-1255. doi: 10.1007/s00024-011-0391-2
  • Guiraud R, Bosworth W, Thierry J, Delplanque A (2005). Phanerozoic geological evolution of Northern and Central Africa: an overview. Journal of African Earth Sciences 43 (1-3): 83-143. doi: 10.1016/j.jafrearsci.2005.07.017
  • Hawie N, Gorini C, Deschamps R, Nader FH, Montadert L et al. (2013). Tectono-stratigraphic evolution of the northern Levant Basin (offshore Lebanon). Marine and Petroleum Geology 48: 392-410. doi: 10.1016/j.marpetgeo.2013.08.004
  • Heiskanen W (1931). Isostatic tables for the reduction of gravimetric observations calculated on the basis of Airy's hypothesis. Bulletin géodésique 30 (1): 110-153. doi: 10.1007/BF03029991
  • Hisarlı ZM (1996). Determination of Curie Point Depths in Western Anatolia and Related with the Geothermal Areas. PhD Thesis, İstanbul University, İstanbul, Turkey.
  • Hunt CP, Moskowitz BM, Banerjee SK (1995). Magnetic properties of rocks and minerals. Rock Physics and Phase Relations: A Handbook of Physical Constants 3: 189-204.
  • Hsü KJ, Ryan WB, Cita MB (1973). Late Miocene desiccation of the Mediterranean. Nature 242 (5395): 240-244. doi: 10.1038/242240a0
  • Jackson J, McKenzie D (1988). The relationship between plate motions and seismic moment tensors, and the rates of active deformation in the Mediterranean and Middle East. Geophysical Journal International 93 (1): 45-73. doi: 10.1111/j.1365- 246X.1988.tb01387.x
  • Kahveci M, Çırmık A, Doğru F, Pamukçu O, Gönenç T (2019). Subdividing the tectonic elements of Aegean and Eastern Mediterranean with gravity and GPS data. Acta Geophysica 67 (2): 491-500. doi: 10.1007/s11600-019-00270-w
  • Khain VE, Polyakova ID (2004). Oil and gas potential of deep-and ultradeep-water zones of continental margins. Lithology and Mineral Resources 39 (6): 530-540. doi: 10.1023/B:LIMI.0000046956.08736.e4
  • Kirby JF (2019). On the pitfalls of Airy isostasy and the isostatic gravity anomaly in general. Geophysical Journal International 216 (1): 103-122. doi: 10.1093/gji/ggy411
  • Krijgsman W, Hilgen FJ, Raffi I, Sierro FJ, Wilson DS (1999). Chronology, causes and progression of the Messinian salinity crisis. Nature 400 (6745): 652-655. doi: 10.1038/23231
  • Kumar R, Bansal AR, Ghods A (2020). Estimation of Depth to Bottom of Magnetic Sources Using Spectral Methods: Application on Iran's Aeromagnetic Data. Journal of Geophysical Research: Solid Earth 125 (3): e2019JB018119. doi: 10.1029/2019JB018119
  • Laske G, Masters G, Ma Z, Pasyanos M (2013). Update on CRUST1. 0— A 1-degree global model of Earth’s crust. Geophysical Research Abstracts 15: 2658.
  • Le Pichon X, Angelier J (1979). The Hellenic arc and trench system: a key to the neotectonic evolution of the eastern Mediterranean area. Tectonophysics 60 (1-2): 1-42. doi: 10.1016/0040-1951(79)90131- 8
  • Le Pichon X (1983). Land-locked oceanic basins and continental collision: The Eastern Mediterranean as a case example. In: Symposium on mountain building; Utrecht, the Netherlands: pp.201-211.
  • Lesur V, Hamoudi, Choi Y, Dyment J, Thébault E (2016). Building the second version of the world digital magnetic anomaly map (WDMAM). Earth, Planets and Space 68 (1): 27. doi: 10.1186/s40623-016-0404-6
  • Li CF, Lu Y, Wang J (2017). A global reference model of Curie-point depths based on EMAG2. Scientific Reports 7: 45129. doi: 10.1038/srep45129
  • Li CF, Shi X, Zhou Z, Li J, Geng J et al (2010). Depths to the magnetic layer bottom in the South China Sea area and their tectonic implications. Geophysical Journal International 182 (3): 1229- 1247. doi: 10.1111/j.1365-246X.2010.04702.x
  • Li CF, Wang J, Lin J, Wang T (2013). Thermal evolution of the North Atlantic lithosphere: new constraints from magnetic anomaly inversion with a fractal magnetization model. Geochemistry, Geophysics, Geosystems 14 (12): 5078-5105. doi: 10.1002/2013GC004896
  • Lowrie W (2007). Fundamentals of Geophysics. 1st ed. New York, USA: Cambridge University Press.
  • Maden N (2012). One-dimensional thermal modeling of the eastern pontides orogenic belt (NE Turkey). Pure and Applied Geophysics 169 (1): 235-248. doi: 10.1007/s00024-011-0296-0
  • Martos YM, Catalán M, Galindo‐Zaldivar J (2019). Curie Depth, Heat Flux, and Thermal Subsidence Reveal the Pacific Mantle Outflow Through the Scotia Sea. Journal of Geophysical Research: Solid Earth 124 (11): 10735-10751. doi: 10.1029/2019JB017677
  • Martos YM, Catalán M, Jordan TA, Golynsky A, Golynsky D et al. (2017). Heat flux distribution of Antarctica unveiled. Geophysical Research Letters 44 (22): 11-417. doi: 10.1002/2017GL075609
  • McClusky S, Balassanian S, Barka A, Demir C, Ergintav S et al. (2000). Global Positioning System constraints on plate kinematics and dynamics in the eastern Mediterranean and Caucasus. Journal of Geophysical Research: Solid Earth 105 (B3): 5695-5719. doi: 10.1029/1999JB900351
  • McKenzie D (1972). Active tectonics of the Mediterranean region. Geophysical Journal International 30 (2): 109-185. doi: 10.1111/j.1365-246X.1972.tb02351.x
  • McKenzie D (1978). Active tectonics of the Alpine—Himalayan belt: the Aegean Sea and surrounding regions. Geophysical Journal International 55 (1): 217-254. doi: 10.1111/j.1365- 246X.1978.tb04759.x
  • Mechie J, Ben-Avraham Z, Weber MH, Götze HJ, Koulakov I et al. (2013). The distribution of Moho depths beneath the Arabian plate and margins. Tectonophysics 609: 234-249. doi: 10.1016/j.tecto.2012.11.015
  • Mercier JL, Sorel D, Vergely P, Simeakis K (1989). Extensional tectonic regimes in the Aegean basins during the Cenozoic. Basin Research 2 (1): 49-71. doi: 10.1111/j.1365-2117.1989.tb00026.x
  • Müller RD, Sdrolias M, Gaina C, Roest WR (2008). Age, spreading rates, and spreading asymmetry of the world's ocean crust. Geochemistry, Geophysics, Geosystems 9 (4). doi: 10.1029/2007GC001743
  • Nishitani T, Kono M (1983). Curie temperature and lattice constant of oxidized titanomagnetite. Geophysical Journal International 74 (2): 585-600. doi: 10.1111/j.1365-246X.1983.tb01890.x
  • Okubo Y, Graf RJ, Hansen RO, Ogawa K, Tsu H (1985). Curie point depths of the island of Kyushu and surrounding areas, Japan. Geophysics 50 (3): 481-494. doi: 10.1190/1.1441926
  • Pamukçu O, Akçığ Z, Hisarlı M, Tosun S (2014). Curie Point depths and heat flow of eastern Anatolia (Turkey). Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 36 (24): 2699- 2706. doi: 10.1080/15567036.2011.574194
  • Pamukçu. (2016). Geodynamic assessment of Eastern Mediterranean region: a joint gravity and seismic b value approach. Arabian Journal of Geosciences 9 (5): 360. doi: 10.1007/s12517-016-2347-4
  • Ravat D (2004). Constructing full spectrum potential-field anomalies for enhanced geodynamical analysis through integration of surveys from different platforms. AGUFM 2004: G44A-03.
  • Ravat D, Morgan P, Lowry AR (2016). Geotherms from the temperaturedepth–constrained solutions of 1-D steady-state heat-flow equation. Geosphere 12 (4): 1187-1197. doi: 10.1130/GES01235.1
  • Ravat D, Pignatelli A, Nicolosi I, Chiappini M (2007). A study of spectral methods of estimating the depth to the bottom of magnetic sources from near-surface magnetic anomaly data. Geophysical Journal International 169 (2): 421-434. doi: 10.1111/j.1365- 246X.2007.03305.x
  • Rızaoğlu T, Parlak O, Höck V, İşler, F (2006). Tectonic Development of the Eastern Mediterranean Region. Geological Society of London. doi: 10.1144/GSL.SP.2006.260.01.01
  • Robertson AHF (2006). Sedimentary evidence from the south Mediterranean region (Sicily, Crete, Peloponnese, Evia) used to test alternative models for the regional tectonic setting of Tethys during Late Palaeozoic-Early Mesozoic time. Geological Society, London, Special Publications 260 (1): 91-154. doi: 10.1144/GSL.SP.2006.260.01.06
  • Robertson AHF, Clift PD, Degnan PJ, Jones G (1991). Palaeogeographic and palaeotectonic evolution of the Eastern Mediterranean Neotethys. Palaeogeography, Palaeoclimatology, Palaeoecology 87 (1-4): 289-343. doi: 10.1016/0031-0182(91)90140-M
  • Rosen PA, Hensley S, Joughin IR, Li FK, Madsen SN et al. (2000). Synthetic aperture radar interferometry. Proceedings of the IEEE 88 (3): 333-382. doi: 10.1109/5.838084.
  • Ross HE, Blakely RJ, Zoback MD (2006). Testing the use of aeromagnetic data for the determination of Curie depth in California. Geophysics 71 (5): L51-L59. doi: 10.1190/1.2335572
  • Rouchy JM, Orszag-Sperber F, Blanc-Valleron MM, Pierre C, Rivière M et al. (2001). Paleoenvironmental changes at the Messinian– Pliocene boundary in the eastern Mediterranean (southern Cyprus basins): significance of the Messinian Lago-Mare. Sedimentary Geology 145 (1-2): 93-117. doi: 10.1016/S0037-0738(01)00126-9
  • Rozenbaum AG, Sandler A, Stein M, Zilberman E (2019). The sedimentary and environmental history of Tortonian-Messinian lakes at the east Mediterranean margins (northern Israel). Sedimentary Geology 383: 268-292. doi: 10.1016/j.sedgeo.2018.12.005
  • Rozimant K, Büyüksaraç A, Bektaş Ö (2009). Interpretation of magnetic anomalies and estimation of depth of magnetic crust in Slovakia. Pure and Applied Geophysics 166 (3): 471-484. doi: 10.1007/s00024-009-0447-8
  • Salazar JM, Vargas CA, Leon H (2017). Curie point depth in the SW Caribbean using the radially averaged spectra of magnetic anomalies. Tectonophysics 694: 400-413. doi: 10.1016/j.tecto.2016.11.023
  • Salem A, Green C, Ravat D, Singh KH, East P et al. (2014). Depth to Curie temperature across the central Red Sea from magnetic data using the de-fractal method. Tectonophysics 624: 75-86. doi: 10.1016/j.tecto.2014.04.027
  • Shirani S, Kalateh AN, Noorollahi Y (2020). Curie point depth estimations for northwest Iran through spectral analysis of aeromagnetic data for geothermal resources exploration. Natural Resources Research 29 (4): 2307-2332. doi: 10.1007/s11053-019- 09579-1
  • Şalk M, Pamukçu O, Kaftan I (2005). Determination of the Curie point depth and heat flow from MAGSAT data of Western Anatolia. Journal of the Balkan Geophysical Society 8 (4): 149-160.
  • Schenk CJ (2010). Petroleum Systems and Assessment of Undiscovered Oil and Gas Resources of the Levant Basin, Eastern Mediterranean. In: GEO 2010 European Association of Geoscientists & Engineers; Manama, Bahrain. pp. 248.
  • Schettino A, Turco E (2011). Tectonic history of the western Tethys since the Late Triassic. Bulletin 123 (1-2): 89-105. doi: 10.1130/B30064.1
  • Seyitoǧlu G, Scott B (1991). Late Cenozoic crustal extension and basin formation in west Turkey. Geological Magazine 128 (2): 155-166. doi: 10.1017/S0016756800018343
  • Snopek K, Meier T, Endrun B, Bohnhoff M, Casten U (2007). Comparison of gravimetric and seismic constraints on the structure of the Aegean lithosphere in the forearc of the Hellenic subduction zone in the area of Crete. Journal of Geodynamics 44 (3-5): 173-185. doi: 10.1016/j.jog.2007.03.005
  • Spector A, Grant FS (1970). Statistical models for interpreting aeromagnetic data. Geophysics 35 (2): 293-302. doi: 10.1190/1.1440092
  • Stampfli GM, Borel GD (2002). A plate tectonic model for the Paleozoic and Mesozoic constrained by dynamic plate boundaries and restored synthetic oceanic isochrons. Earth and Planetary Science Letters 196 (1-2): 17-33. doi: 10.1016/S0012-821X(01)00588-X
  • Stampfli GM, Mosar J, Favre P, Pillevuit A, Vannay JC (2001). PermoMesozoic evolution of the western Tethys realm: The Neo-Tethys East Mediterranean basin connection. Mémoires du Muséum national d'histoire naturelle 186: 51-108.
  • Steinberg J, Roberts AM, Kusznir NJ, Schafer K, Karcz, Z (2018). Crustal structure and post-rift evolution of the Levant Basin. Marine and Petroleum Geology 96: 522-543. doi: 10.1016/j.marpetgeo.2018.05.006
  • Tanaka A, Okubo Y, Matsubayashi O (1999). Curie point depth based on spectrum analysis of the magnetic anomaly data in East and Southeast Asia. Tectonophysics 306 (3-4): 461-470. doi: 10.1016/S0040-1951(99)00072-4
  • Tari G, Kohazy R, Hannke K, Hussein H, Novotny B et al. (2012). Examples of deep-water play types in the Matruh and Herodotus basins of NW Egypt. The Leading Edge 31 (7): 816-823. doi: 10.1190/tle31070816.1
  • Tassy A, Crouzy E, Gorini C, Rubino JL, Bouroullec JL et al. (2015). Egyptian Tethyan margin in the Mesozoic: Evolution of a mixed carbonate-siliciclastic shelf edge (from Western Desert to Sinai). Marine and Petroleum Geology 68: 565-581. doi: 10.1016/j.marpetgeo.2015.10.011
  • Taymaz T, Jackson J, Westaway R (1990). Earthquake mechanisms in the Hellenic Trench near Crete. Geophysical Journal International 102 (3): 695-731. doi: 10.1111/j.1365-246X.1990.tb04590.x
  • Tugend J, Chamot‐Rooke N, Arsenikos S, Blanpied C, Frizon de Lamotte, D (2019). Geology of the Ionian Basin and margins: A key to the East Mediterranean geodynamics. Tectonics 38 (8): 2668- 2702. doi: 10.1029/2018TC005472
  • USGS (2021). Earthquake Catalogue [online]. Website https://earthquake.usgs.gov/earthquakes/search/ [accessed 31 May 2021].
  • Vanacore EA, Taymaz T, Saygin E (2013). Moho structure of the Anatolian Plate from receiver function analysis. Geophysical Journal International 193 (1): 329-337. doi: 10.1093/gji/ggs107
  • Yousef M. Moustafa AR, Shann M (2010). Structural setting and tectonic evolution of offshore north Sinai, Egypt. Geological Society, London, Special Publications 341 (1): 65-84. doi: 10.1144/SP341.4
  • Zilberman E, Calvo R (2013). Remnants of Miocene fluvial sediments in the Negev Desert, Israel, and the Jordanian Plateau: Evidence for an extensive subsiding basin in the northwestern margins of the Arabian plate. Journal of African Earth Sciences 82: 33-53. doi: 10.1016/j.jafrearsci.2013.02.006
Turkish Journal of Earth Sciences-Cover
  • ISSN: 1300-0985
  • Yayın Aralığı: Yılda 6 Sayı
  • Yayıncı: TÜBİTAK
Sayıdaki Diğer Makaleler

A Holocene paleomagnetic record from Küçükçekmece Lagoon, NW Turkey

Özlem MAKAROĞLU

The multidisciplinary approaches on facies developments and depositional systems of the Bahçecik travertines, Gümüşhane, NE-Turkey

Ezher TAGLIASACCHI, Raif KANDEMİR, Mine Sezgül KAYSERİ ÖZER, Dilek ŞAFFAK, Fatih KÖROĞLU, Hsun-Ming HU, Chuan-Chou SHEN

Reassessment of the age and depositional environment of the Kırkgeçit Formation based on larger benthic foraminifera, NW Elazığ, Eastern Turkey

Sibel KAYĞILI

Simulation of seismic triggering and failure time perturbations associated with the 30 October 2020 Samos earthquake (Mw 7.0)

Eyüp SOPACI, Atilla Arda ÖZACAR

Finite volume modeling of bathymetry and fault-controlled fluid circulation in the Sea of Marmara

Elif ŞEN, Doğa DÜŞÜNÜR DOĞAN

Long-term spatiotemporal evolution of land subsidence in Konya metropolitan area (Turkey) based on multisensor SAR data

Gökhan ASLAN, Ziyadin ÇAKIR, Nurdan ŞİRECİ

Interpretation of magnetic data using boundary analysis and inversion techniques: a case study from Gölcük/Isparta (Turkey) region

Emre TİMUR, Coşkun SARI

Combined qualitative and quantitative regional interpretation of the thermal results of magnetic data in the Eastern Mediterranean Region

İlkin ÖZSÖZ

High-resolution temperature and precipitation variability of southwest Anatolia since 1730 CE from Lake Gölcük sedimentary records

Iliya Bauchi DANLADI, Sena AKÇER-ÖN, Z. Bora ÖN, Sabine SCHMIDT