A Holocene paleomagnetic record from Küçükçekmece Lagoon, NW Turkey

A Holocene paleomagnetic record from Küçükçekmece Lagoon, NW Turkey

Lake sediments are very useful for providing high-resolution records of geomagnetic field variations, especially for the Holocene period. We present high-resolution paleomagnetic records from three cores (KCL12P1, P2, and P3) recovered from Küçükçekmece Lagoon, located at the northern shoreline of the Sea of Marmara, Turkey. The cores were subjected to a comprehensive paleomagnetic and rock magnetic investigation using oriented samples. According to the age-depth model, based on radiocarbon dating and X-ray fluorescence-derived Ca/Ti element ratios, tuned to available oxygen isotope records based on an absolute calendaryear time-scale, we obtained a new paleomagnetic record for the last 3800 years. Low paleointensities were found during 1500–2000 BP. Stacked paleomagnetic directions from Küçükçekmece Lagoon were correlated to regional geomagnetic field models. This correlation proved that the paleomagnetic records (paleointensity, inclination) obtained from the Küçükçekmece Lagoon sediments considerably agree with the data from the surrounding region over the past 3800 years.

___

  • Akçer Ön S (2011). Küçükçekmece Lagünü, Yeniçağa, Uludağ Buzul Ve Bafa Gölleri’nin (Batı Türkiye) Geç Holosen’deki İklim Kayıtları: Avrupa Ve Orta Doğu İklim Kayıtları İle Karşılaştırılması. PhD, İstanbul Technical University, İstanbul, Turkey (in Turkish).
  • Altun Ö, Saçan MT, Erdem AK (2009). Water quality and heavy metal monitoring in water and sediment samples of the Küçükçekmece Lagoon, Turkey (2002–2003). Environmental Monitoring and Assessment 151: 345–362. doi: 10.1007/s10661- 008-0276-8
  • Anker S, Colhoun E, Barton C, Peterson M, Barbetti M (2001). Holocene Vegetation and Paleoclimatic and Paleomagnetic History from Lake Johnston, Tasmania. Quaternary Research. 56, 264-274. doi:10.1006/qres.2001.2233
  • Avşar U, Hubert-Ferrari A, Batist M, Fagel N (2014). A 3400 year lacustrine paleoseismic record from the North Anatolian Fault, Turkey: Implications for bimodal recurrence behavior, Geophysical Research Letter 41: 377–384. doi: 10.1002/2013GL058221
  • Bloemendal J, King JW, Hall FR, Doh SH (1992). Rock magnetism of late Neogene and Pleistocene deep-sea sediments: Relationship to sediment source, diagenetic processes, and sediment lithology. Journal of Geophysical Research 97: 4361–4375. doi: 10.1029/91JB03068
  • Brandt U, Nowaczyk NR, Ramrath A, Brauer A, Mingram J et al. (1999). Palaeomagnetism of Holocene and Late Pleistocene sediments from Lago di Mezzano and Lago Grande di Monticchio (Italy): initial results. Quaternary Science Reviews 18: 961-976.
  • Brown MC, Donadini F, Korte M, Nilsson A, Korhonen K, Lodge A. Lengyel SN, Constable CG (2015). GEOMAGIA50.v3: 1. General structure and modifications to the archeological and volcanic database. Earth Planets Space 67:83. doi: 10.1186/s40623-015-0232-0
  • Çağatay MN, Uçarkuş G (2019). Morphotectonics of the Sea of Marmara: basins and highs on the North Anatolian continental transform plate boundary. In: João C. Duarte (editor). Transform Plate Boundaries and Fracture Zones, Chapter 16, pp. 397–415. doi: 10.1016/B978-0-12-812064-4.00016-5
  • Channell JET, Singer BS, Jicha BR (2020). Timing of Quaternary geomagnetic reversals and excursions in volcanic and sedimentary archives. Quaternary Science Reviews. 228: 106114. doi: 10.1016/j.quascirev.2019.106114.
  • Day R, Fuller M, Schmidt VA (1977). Hysteresis properties of titanomagnetites: grain-size and compositional dependence, Physics of the Earth and Planetary Interiors 13: 260-267. doi: 10.1016/0031- 9201(77)90108-X
  • Drab L, Carlut J, Hubert-Ferrari A, Martinez P, LePoint G et al. (2015). Palaeomagnetic and geochemical record from cores from the Sea of Marmara, Turkey: age constraints and implications of sapropelic deposition on early diagenesis, Marine Geology 360: 40–54. doi: 10.1016/j.margeo.2014.12.002
  • Dunlop DJ (2002). Theory and application of the Day plot (M-rs/M-s versus H-cr/H-c) 1. Theoretical curves and tests using titanomagnetite data. Journal of Geophysical Research 107(B3): 2056. doi: 10.1029/2001JB000486
  • Ertepınar P, Langereis CG, Biggin AJ, Frangipane M, Matney T et al. (2012). Archaeomagnetic study of five mounds from upper Mesopotamia between 2500 and 700BC: further evidence for an extremely strong geomagnetic field ca. 3000 years ago. Earth and Planetary Science Letters 357: 84–98. doi: 10.1016/j.epsl.2012.08.039
  • Ertepınar P, Langereis CG, Biggin AJ, de Groot LV, Kulakoğlu F et al. (2016). Full vector archaeomagnetic records from Anatolia between 2400 and 1350 BCE: implications for geomagnetic field models and the dating of fires in antiquity. Earth and Planetary Science Letters. 434: doi: 171–186. 10.1016/j.epsl.2015.11.015
  • Ertepınar P, Hammond ML, Hill MJ, Biggin AJ, Langereis CG et al. (2020). Extreme geomagnetic field variability indicated by Eastern Mediterranean full-vector archaeomagnetic records. Earth and Planetary Science Letters 531: 115979. doi: 10.1016/j.epsl.2019.115979
  • Fleitmann D, Cheng H, Badertscher S, Edwards RL, Mudelsee M et al. (2009). Timing and climatic impact of Greenland interstadials recorded in stalagmites from northern Turkey. Geophysical Research Letters 36: 19707. doi: 10.1029/2009GL040050
  • Frank U, Schwab MJ, Negendank JFW (2002). A lacustrine record of paleomagnetic secular variations from Birkat Ram, Golan Heights (Israel) for the last 4400 years. Physics of the Earth and Planetary Interiors 133: 21–34. doi: 10.1016/S0031-9201(02)00085-7
  • Frank U, Nowaczyk NR and Negendank JFW (2007). Palaeomagnetism of greigite bearing sediments from the Dead Sea, Israel. Geophysical Journal International 168: 904–920. doi: 10.1111/j.1365- 246X.2006.03263.x
  • Gogorza CSG, Sinito AM, Vilas JF, Creer KM, Nunez H (2000). Geomagnetic secular variations over the last 6500 years as recorded by sediments from the lakes of south Argentina. Geophysical Journal International 143: 787– 798. doi: 10.1046/j.1365- 246X.2000.00277.x
  • Haltia-Hovi E, Nowaczyk N, Saarinen T (2010). Holocene palaeomagnetic secular varition recorded inmultiple lake sediments cores from eastern Finland. Geophysical Journal International 180: 609–622. doi: 10.1111/j.1365-246X.2009.04456.x
  • Hercman H, Gaesiorowski M, Pawlak J, Błaszczyk M, Gradziński M et al. (2020). Atmospheric circulation and the differentiation of precipitation sources during the Holocene inferred from five stalagmite records from Demänová Cave System (Central Europe). The Holocene. 30 (6): 834. doi: 10.1177/0959683620902224
  • Hrouda F (1994). A technique for the measurement of thermal changes of magnetic susceptibility of weakly magnetic rocks by the CS-2 Apparatus and KLY-2 Kappabridge, Geophysical Journal International 118: 604-612. doi: 10.1111/j.1365-246X.1994.tb03987.x
  • Kaya N (2020). Orta ve Batı Anadolu’da Jeomanyetik Alan Şiddetinin Neojen-Kuvaterner boyunca Değişimi, PhD. İstanbul Üniversitesi-Cerrahpaşa, Yüksek Lisans Enstitüsü (in Turkish).
  • Kirschvink JL (1980). The least-squares line and plane and the analysis of palaeomagnetic data. Geophysical Journal International 62: 699–718. doi: 10.1111/j.1365-246X.1980.tb02601.x
  • Korfmann M, Becher H (1987). Demircihöyük, Die ergebnisse der Ausgrabungen 1975-1978, Philipp von Zabern and Mainz am Rhein. doi: 10.11588/ger.1990.61603
  • Korte M, Donadini F, Constable CG (2009). Geomagnetic field for 0–3 ka: 2. A new series of time-varying global models. Geochemistry Geophysics Geosystems (G3) 10: Q06008. doi: 10.1029/2008GC002297
  • Korte M, Constable C (2011). Improving geomagnetic field reconstructions for 0– 3 ka. Physics of the Earth and Planetary Interiors 188: 247–259. doi: 10.1016/j.pepi.2011.06.017
  • Korte M, Constable C, Donadinic F, Holmed R (2011). Reconstructing the Holocene geomagnetic field. Earth and Planetary Science Letters 312 (3-4): 497- 505. doi: 10.1016/j.epsl.2011.10.031
  • Kotilainen AT, Saarinen T, Winterhalter B (2000). Highresolution paleomagnetic dating of sediments deposited in the central Baltic Sea during the last 3000 years. Marine Geology 166: 51–64. doi: 10.1016/S0025-3227(00)00012-8
  • Kovacheva M (1980). Summarised results of the archaeomagnetic investigations of the geomagnetic field variation for the last 8000 years in SouthEastern Europe, Geophysical Journal Royal Astronomical Society 61: 57-64. doi: 10.1111/j.1365- 246X.1980.tb04303.x
  • Lapointe L, Francus P, Stoner JS, Abbott MB, Balascio, NL et al. (2019). Chronology and sedimentology of a new 2.9 ka annually laminated record from South Sawtooth Lake, Ellesmere Island. Quaternary Science Reviews 222: 105875. doi: 10.1016/j.quascirev.2019.105875
  • Ledu D, Rochon A., Vernal A, Barletta F, Onge G (2010). Holocene sea ice history and climate variability along the main axis of the Northwest Passage, Canadian Arctic. Paleoceanography 25: 2213. doi: 10.1029/2009PA001817
  • Levi S, Banerjee SK (1976). On the possibility of obtaining relative paleointensities from lake sediments. Earth and Planetary Science Letters 29: 219– 226. doi: 10.1016/0012-821X(76)90042-X
  • Makaroğlu Ö, Nowaczyk NR, Eriş KK, Çağatay MN (2020). High-resolution palaeomagnetic record from Sea of Marmara sediments for the last 70 ka. Geophysical Journal International. 222: 2024-2039. doi: 10.1093/gji/ggaa281
  • Makaroğlu Ö (2011). Van Gölü Sedimanlarının Çevre Mağnetizması ve Paleomağnetik Kayıtları. İstanbul.Üniversitesi. Fen Bilimleri Enstitüsü. PhD. (in Turkish)
  • Mensing SA, Schoolman EM, Tunno I, Noble P, Sagnotti L et al. (2018). Historical ecology reveals landscape transformation coincident with cultural development in central Italy since the Roman Period. Science Report 8: 2138. doi: 10.1038/s41598-018-20286-4
  • Marco S, Ron H, McWilliams MO, Stein M (1998). HighResolution Record of Geomagnetic Secular Variation from Late Pleistocene Lake Lisan Sediments (Paleo Dead Sea). Earth and Planetary Science Letters 161: 145–160. doi: 10.1016/S0012-821X(98)00146-0
  • Mothersill JS (1996) Paleomagnetic results from LakesVictoria and Albert, Uganda. Studia Geophysica et Geodaetica 40: 25–35.
  • Nowaczyk NR, Arz HW, Frank U, Kind J, Plessen B (2012). Dynamics of the Laschamp geomagnetic excursion from Black Sea sediments. Earth and Planetary Science Letters 351–352: 54–69. doi: 10.1016/j.epsl.2012.06.050
  • Nowaczyk NR, Frank U, Kind J, Arz HW (2013). A highresolution palaeointensity stack of the past 14 to 68 ka from Black Sea sediments. Earth and Planetary Science Letters 384: 1–16. doi: 10.1016/j.epsl.2013.09.028
  • Nilsson A, Holme R, Korte M, Suttie N, Hill M (2014). Reconstructing Holocene geomagnetic field variation: new methods, models and implications Geophysical Journal International 198: 229-248. doi: 10.1093/gji/ggu120
  • Nourgaliev D, Heller F, Borissov A, Iassonov P, Khassanov D et al. (2000). Paleomagnetism of recent Russian lake sediments. Geologica Carpathica 51: 179–180.
  • Pehlivan R, Yilmaz O (2004). Geochemistry and mineralogy of bottom sediments in the Kuçukçekmece Lake, Istanbul, Turkey. Geochemistry International 42: 1099–1106.
  • Ponat E (1995). Archaeomagnetism in Western Turkey, PhD, Boğaziçi University.
  • Reimer PJ, Baillie MGL, Bard E, Bayliss A, Beck JW et al. (2009). IntCal09 and Marine09 radiocarbon age calibration curves, 0–50,000 years cal BP. Radiocarbon 51 (4): 1111–50. doi: 10.1017/S0033822200034202
  • Reynolds RL, Tuttle ML, Rice CA, Fishman NS, Karachewsk JA et al. (1994). Magnetization and geochemistry of greigite‐bearing Cretaceous strata, north slope basin Alaska. American Journal of Science 294: 485–528. doi: 10.2475/ajs.294.4.485
  • Roberts AP, Turner GM (1993). Diagenetic formation of ferromagnetic iron sulphides minerals in rapidly deposited marine sediments, South Island, New Zealand. Earth and Planetary Science Letters 115: 257–273. doi: 10.1016/0012-821X(93)90226-Y
  • Roberts AP, Chang L, Rowan CJ, Horng VS, Florindo F (2011). Magnetic properties of sedimentary greigite (Fe3S4): an update. Reviews of Geophysics 49: 1002. doi: 10.1029/2010RG000336
  • Roberts AP (2015). Magnetic mineral diagenesis. Earth Science Review (151): 1-47. doi: 10.1016/j.earscirev.2015.09.010.
  • Ron H, Nowaczyk NR, Frank U, Schwab MJ, Naumann R et al. (2007). Greigite detected as dominating remanence carrier in late Pleistocene sediments, Lisan Formation, from Lake Kinneret (Sea of Galilee). Israel, Geophysical Journal of International 170: 117– 131. doi: 10.1111/j.1365-246X.2007.03425.x
  • Saarinen, T (1998). High-resolution palaeosecular variation in northern Europe during the last 3200 years. Physics of the Earth and Planetary Interiors 106: 299–309. doi: 10.1016/S0031-9201(97)00113- 1
  • Sagnotti L,Speranza F, Winkler A, Mattei, M, Funiciello R (1998). Magnetic fabric of clay sediments from the external northern Apennines (Italy). Physics of the Earth and Planetary Interiors 105: 73-93. doi: 10.1016/S0031-9201(97)00071-X
  • Sagnotti L, Macri P, Camerlenghi A, Rebesco M (2001). Environmental magnetism of Antarctic Late Pleistocene sediments and inter hemispheric correlation of climatic events. Earth and Planetary Science Letters 191: 65–80. doi: 10.1016/S0012- 821X(01)00438-1
  • Sanver M, Ponat E (1981). İkiztepe I Kazısından elde edilen Arkeomanyetik Sonuçlar, TÜBİTAK Arkeometri Ünitesi Bilimsel Toplantı Bildirileri II. Boğaiçi Üniv. Yayınları.
  • Sarıbudak M, Tarling DH (1993). Archaeomagnetic Studies of the Urartian Civilization, Eastern Turkey. Antiquity 67: 620- 628. doi: 10.1017/S0003598X00045841
  • Sayın N, Orbay N (2003). Orta Anadolu Arkeomağnetik Örnekleri İle Yermagnetik Alanının Seküler Değişiminin İncelenmesi, İstanbul Üniv. Müh. Fak. Yerbilimleri Dergisi 16 (1): 33-43.
  • Shaar R, Hassul E, Raphael K, Ebert Y, Segal Y et al. (2018). The First Catalog of Archaeomagnetic Directions From Israel With 4,000 Years of Geomagnetic Secular Variations. Frontiers in Earth Science 6: 164 doi: 10.3389/feart.2018.00164
  • Snowball IF, Thompson R (1990). A stable chemical remanence in Holocene sediments, Journal of Geophysical Research 95: 4471–4479. doi: 10.1029/JB095iB04p04471.
  • Snowball IF (1991). Magnetic hysteresis properties of greigite (Fe3S4) and a new occurrence in Holocene sediments from Swedish Lappland. Physics of the Earth and Planetary Interiors 68: 32–40. doi: 10.1016/0031-9201(91)90004-2
  • Snowball I, Zillén L, Ojala A, Saarinen T, Sandgren P (2007). FENNOSTACK and FENNORPIS: Varve dated Holocene palaeomagnetic secular variation and relative paleointensity stacks for Fennoscandia. Earth and Planetary Science Letters 255: 106– 116. doi: 10.1016/j.epsl.2006.12.009
  • Snowball I, Sandgren P (2002). Geomagnetic field variations in northern Sweden during the Holocene quantified from varved lake sediments and their implications for cosmogenic nuclide production rates. Holocene 12: 517–530. doi: 10.1191/0959683602hl562rp
  • Tauxe L (1993). Sedimentary records of relative paleointensity of the geomagnetic field: theory and practice. Reviews of Geophysics 31: 319–354. doi: 10.1029/93RG01771
  • Thompson R, Turner GM, Stiller M and Kaufman A (1985). Near East palaeomagnetic secular variation recorded in sediments from the Sea of Galilee (Lake Kinneret). Quaternary Research 23: 175-188. doi: 10.1016/0033-5894(85)90027-4
  • Thompson R, Turner GM (1979). British geomagnetic master curves 10,000-0 yr B.P. for dating European, Geophysical Research Letters 6-4: 249–252.
  • Thomson J, Croudace IW, Rothwell RG (2006). A geochemical application of the ITRAX scanner to a sediment core containing eastern Mediterranean sapropel units. In: Rothwell, R.G. (Ed.), New Techniques in Sediment Core Analysis. Geological Society, London, Special Publications 267. doi: 10.1144/GSL.SP.2006.267.01.05
  • Valet JP (2003). Time variations in geomagnetic intensity. Reviews of Geophysics 41: 1004. doi: 10.1029/2001RG000104
  • Vigliotti L (2006). Secular variation record of the Earth’s magnetic field in Italy during the Holocene: Constraints for the construction of a master curve. Geophysical Journal of International 165: 414–429. doi: 10.1111/j.1365-246X.2005.02785.x
  • Vigliotti L, Channell JET, Stockhecke M (2014). Palaeomagnetism of Lake Van sediments: chronology and palaeoenvironment since 350 ka. Quaternary Science Reviews 104: 1829. doi: 10.1016/j.quascirev.2014.09.028
  • Zijderveld JDA (1967). AC demagnetization of rocks: analysis of results, in Methods in Palaeomagnetism. In: Runcorn S.K., Creer K.M., Collinson D.W (editors) Elsevier, pp. 254–286
Turkish Journal of Earth Sciences-Cover
  • ISSN: 1300-0985
  • Yayın Aralığı: Yılda 6 Sayı
  • Yayıncı: TÜBİTAK
Sayıdaki Diğer Makaleler

Combined qualitative and quantitative regional interpretation of the thermal results of magnetic data in the Eastern Mediterranean Region

İlkin ÖZSÖZ

The multidisciplinary approaches on facies developments and depositional systems of the Bahçecik travertines, Gümüşhane, NE-Turkey

Ezher TAGLIASACCHI, Raif KANDEMİR, Mine Sezgül KAYSERİ ÖZER, Dilek ŞAFFAK, Fatih KÖROĞLU, Hsun-Ming HU, Chuan-Chou SHEN

Finite volume modeling of bathymetry and fault-controlled fluid circulation in the Sea of Marmara

Elif ŞEN, Doğa DÜŞÜNÜR DOĞAN

High-resolution temperature and precipitation variability of southwest Anatolia since 1730 CE from Lake Gölcük sedimentary records

Iliya Bauchi DANLADI, Sena AKÇER-ÖN, Z. Bora ÖN, Sabine SCHMIDT

Long-term spatiotemporal evolution of land subsidence in Konya metropolitan area (Turkey) based on multisensor SAR data

Gökhan ASLAN, Ziyadin ÇAKIR, Nurdan ŞİRECİ

Simulation of seismic triggering and failure time perturbations associated with the 30 October 2020 Samos earthquake (Mw 7.0)

Eyüp SOPACI, Atilla Arda ÖZACAR

Reassessment of the age and depositional environment of the Kırkgeçit Formation based on larger benthic foraminifera, NW Elazığ, Eastern Turkey

Sibel KAYĞILI

A Holocene paleomagnetic record from Küçükçekmece Lagoon, NW Turkey

Özlem MAKAROĞLU

Interpretation of magnetic data using boundary analysis and inversion techniques: a case study from Gölcük/Isparta (Turkey) region

Emre TİMUR, Coşkun SARI