Appraisal of active tectonics using DEM-based hypsometric integral and trend surface analysis in Emilia-Romagna Apennines, northern Italy

The hypsometric integral (HI) has generally been used to explain the stages of landscape evolution and erosional processes. It is an important tool to investigate tectonics and lithologic and climatic effects on topographic change. We analyzed the significance of the HI to investigate active tectonics in the Emilia-Romagna Apennines of northern Italy. We used a digital elevation model of 5-m spatial resolution to calculate grid-based HI values. The HI distribution does not show clear spatial patterns of high and low HI values. However, when statistical methods of local indices of spatial autocorrelation were applied, it was possible to identify clear clusters of high and low HI values. Trend surface analysis (TSA) was carried out to distinguish areas with anomalously high and low elevations, and to observe their spatial correlation with the HI and regional geological structures. The results indicate that the high HI values and TSA anomalies are positively correlated with the areas of high tectonic activity and along the regional tectonic structures.

Appraisal of active tectonics using DEM-based hypsometric integral and trend surface analysis in Emilia-Romagna Apennines, northern Italy

The hypsometric integral (HI) has generally been used to explain the stages of landscape evolution and erosional processes. It is an important tool to investigate tectonics and lithologic and climatic effects on topographic change. We analyzed the significance of the HI to investigate active tectonics in the Emilia-Romagna Apennines of northern Italy. We used a digital elevation model of 5-m spatial resolution to calculate grid-based HI values. The HI distribution does not show clear spatial patterns of high and low HI values. However, when statistical methods of local indices of spatial autocorrelation were applied, it was possible to identify clear clusters of high and low HI values. Trend surface analysis (TSA) was carried out to distinguish areas with anomalously high and low elevations, and to observe their spatial correlation with the HI and regional geological structures. The results indicate that the high HI values and TSA anomalies are positively correlated with the areas of high tectonic activity and along the regional tectonic structures.

___

  • Ambrosetti P, Carboni MG, Conti MA, Esu D, Girotti O, La Monica GB, Landini B, Parisi G (1987). Il Pliocene ed il Pleistocene inferiore del bacino del Fiume Tevere nell’Umbria meridionale. Geogr Fis Dinam Quat 10: 10–33 (in Italian).
  • Amrhein C, Reynolds H (1997). Using the Getis statistic to explore method aggregation effects in metropolitan Toronto census data. Can Geogr 41: 137–149.
  • Anselin L (1995). Local indicators of spatial association-LISA. Geogr Anal 27: 93–115.
  • Balocchi P (2003). Analisi mesostrutturale e macrostrutturale delle strutture fragili presenti nelle unità del gruppo di Bismantova affioranti tra Zocca e Castel d’Aiano (Appennino Modenese e Bolognese). Modena, Italy: Università di Modena e Reggio Emilia (in Italian).
  • Bartolini C, Bernini M, Carloni GC, Costantini A, Federici PR, Gasperl G, Lazzarotto A, Marchetti G, Mazzanti R, Papani G et al. (1982). Carta Neotettonica dell’ Appennino Settentrionale, note illustrative. Boll Soc Geol It 101: 523–549 (in Italian).
  • Bendkik AM, Boccaletti M, Bonini M, Poccianti C, Sani F (1994). Structural evolution of the outer Apennine chain (FirenzuolaCittà di Castello sector and Montefeltro area, TuscanRomagnan and Umbro-Marchean Apennine). Mem Soc Geol It 48: 515–522.
  • Bertolini G, Pellegrini M (2001). The landslides of the Emilia Apennines (northern Italy) with reference to those which resumed activity in the 1994-1999 period and required civil protection interventions. Quad Geol Appl 8: 27–74.
  • Boccaletti M, Coli M, Eva C, Ferrari G, Giglia G, Lazzatotto A, Merlanti F, Nicolich R, Papani G, Postpischl D (1985). Considerations on the seismotectonics of the Northern Apennines. Tectonophysics 117: 7–38.
  • Boccaletti M, Elter P, Guazzone G (1971). Polarità strutturali delle Alpi e dell’Appennino in rapporto all’inversione di una zona di subduzione nord-tirrenica. Mem Soc Geol It 10: 371–378 (in Italian).
  • Boccaletti M, Guazzone G (1972). Gli archi appenninici, il Mar Ligure ed il Tirreno nel quadro della tettonica dei bacini marginali retro-arco. Mem Soc Geol It 11: 201–216 (in Italian). Calderoni G, Di Giovambattista R, Burrato P, Ventura G (2009). A seismic sequence from Northern Apennines (Italy) provides new insight on the role of fluids in the active tectonics of accretionary wedges. Earth Planet Sci Lett 281: 99–109.
  • Castaldini D, Coratza P, Panizza M (2009). Landslides or moraines? A new geomorphological map of the area of Mt. Cimone (the highest peak of the Northern Apennines, Italy). In: Malet JP, Remaitre A, Bogaard T, editors. Landslide Processes: From Geomorphologic Mapping to Dynamic Modeling. Strasbourg, France: CERG Editions, pp. 9–14.
  • Castello B, Selvaggi G, Chiarabba C, Amato A (2006). CSI Catalogo della sismicità italiana 1981-2002, version 1.1. Rome, Italy: INGV-CNT (in Italian).
  • Cerrina Feroni A, Martelli L, Martinelli P, Ottria P (2002). Carta geologico strutturale dell’Appennino Emiliano Romagnolo. Florence, Italy: CNR (in Italian).
  • Cerrina Feroni A, Martelli L, Martinelli P, Ottria P, Sarti G (2001). The Romagna Apennines, Italy: an eroded duplex. Geol J 36: 39–
  • Chen YC, Sung Q, Cheng KY (2003). Along-strike variations of morphotectonic features in the Western Foothills of Taiwan: tectonic implications based on stream-gradient and hypsometric analysis. Geomorphology 56: 109–137.
  • Chou YH (1997). Exploring Spatial Analysis in Geographic Information Systems. Santa Fe, NM, USA: Onward Press.
  • Cliff A, Ord JK (1981). Spatial Processes, Models and Applications. London, UK: Pion Ltd.
  • Cruden DM, Varnes DJ (1996). Landslide types and processes. In: Turner AK, Schuster RL, editors. Landslides: Investigation and Mitigation. Washington, DC, USA: National Academy Press, pp. 36–75.
  • Diniz-Filho JAF, Bini LM, Hawkins BA (2003). Spatial autocorrelation and red herrings in geographical ecology. Global Ecol Biogeogr 12: 53–64.
  • Elter P (1960). I lineamenti tettonici dell’Appennino a NW delle Apuane. Boll Soc Geol It 60: 273–312 (in Italian).
  • Garrote J, Heydt GG, Cox RT (2008). Multi-stream order analyses in basin asymmetry: a tool to discriminate the influence of neotectonics in fluvial landscape development (Madrid Basin, Central Spain). Geomorphology 102: 130–144.
  • Omvir S (2009). Hypsometry and erosion proneness: a case study in the lesser Himalayan Watersheds. J Soil Water Conserv 8: 53–
  • Ord JK, Getis A (1995). Local spatial autocorrelation statistics: distributional issues and application. Geogr Anal 27: 286–306. Panini F, Bettelli G, Pizziolo M, Bonazzi U, Capitani M, Fioroni C, Fregni P, Gasperi G, Amorosi A, Fazzini P et al. (2002a). Note illustrative alla Carta Geologica D’Italia alla scala 1:50.000, sheet 237, Sasso Marconi. Regione Emilia-Romagna. Florence, Italy: CNR (in Italian).
  • Panini F, Bettelli G, Pizziolo M, Bonazzi U, Capitani M, Fioroni C, Fregni P, Gasperi G, Amorosi A, Fazzini P et al. (2002b). Note Illustrative alla Carta Geologica D’Italia alla scala 1:50.000, sheet 237, Sasso Marconi. Regione Emilia-Romagna. Florence, Italy: CNR (in Italian).
  • Panizza M, Carton A, Castaldini D, Mantovani F, Spina R (1978). Esempi di morfoneotettonica nelle Dolomiti occidentali e nell’Appennino modenese. Geogr Fis Dinam Quat 1: 28–54 (in Italian).
  • Pérez-Peña JV, Azanon JM, Azor A (2009a). CalHypso: An ArcGIS extension to calculate hypsometric curves and their statistical moments. Applications to drainage basin analysis in SE Spain. Comp Geosci 35: 1214–1223.
  • Pérez-Peña JV, Azanon JM, Booth-Rea G, Azor A, Delgado J (2009b). Differentiating geology and tectonics using a spatial autocorrelation technique for the hypsometric integrals. J Geophys Res 114: 1–15.
  • Piccinini D, Chiarabba C, Augliera P (2006). Compression along the northern Apennines? Evidences from the Mw 5.3 Monghidoro earthquake. Terra Nova 18: 89–94.
  • Picotti V, Pazzaglia FJ (2008). A new active tectonic model for the construction of the Northern Apennines mountain front near Bologna (Italy). J Geophys Res 113: B08412.
  • Picotti V, Ponza A, Pazzaglia FJ (2009). Topographic expression of active faults in the foothills of the Northern Apennines. Tectonophysics 474: 285–294.
  • Pike RJ, Wilson SE (1971). Elevation-relief ratio, hypsometric integral, and geomorphic area-altitude analysis. Geol Soc America Bull 82: 1079–1084.
  • Plesi G, Chicchi S, Daniele G, Bettelli G, Catanzarini R, Cerrina Feroni A, De Nardo MT, Martinelli P, Ottria G, Panini F et al. (2002a). Note illustrative alla Carta Geologica d’Italia alla scala 1:000, sheet 235, Pievepelago.  Regione Emilia-Romagna. Florence, Italy: CNR (in Italian).
  • Plesi G, Daniele G, Botti F, Palandri S (2002b). Carta strutturale dell’alto Appennino tosco-emiliano, scale 1:100.000. Florence, Italy: CNR (in Italian).
  • Pondrelli S, Salimbeni S, Ekstrom G, Morelli A, Gasperini P, Vannucci G (2006). The Italian CMT dataset from 1977 to the present. Phys Earth Planet Int 159: 286–303.
  • Ratcliffe JH, McCullagh MJ (1998). Identifying repeat victimization with GIS. Br J Criminol 38: 651–662.
  • Weissel JK, Pratson LF, Malinverno A (1994). The length-scaling properties of topography. J Geophys Res 99: 13997–14012.
  • Willgoose G, Hancock G (1998). Revisiting the hypsometric curve as an indicator of form and process in transport-limited catchment. Earth Surf Processes Landforms 23: 611–623.
  • Wilson LJ, Vallee M, Montpetit J (2009). Comments on hydrometeorological accuracy enhancement via postprocessing of numerical weather forecasts in complex terrain. Weather Forecast 24: 892–894.
Turkish Journal of Earth Sciences-Cover
  • ISSN: 1300-0985
  • Yayın Aralığı: Yılda 6 Sayı
  • Yayıncı: TÜBİTAK