Betonarme Perdelerin Kesme Güvenliğinin TBDY-2018’e Göre İncelenmesi

Bu çalışmada, betonarme perdelerin tasarım kesme kuvvetinin yeterliliği Türkiye Bina Deprem Yönetmeliği 2018 (TBDY-2018) esaslarına göre araştırılmıştır. Bu amaç doğrultusunda, taşıyıcı sistemi süneklik düzeyi yüksek betonarme çerçevelerden ve perdelerden oluşan 20 katlı bir binada doğrusal ve doğrusal olmayan analizler yürütülmüştür. Çalışma kapsamında öncelikle 20 katlı bir binanın dayanıma göre tasarımı mod birleştirme yöntemi ile gerçekleştirilmiştir. Tasarlanmış binada, yatay elastik tasarım spektrumuna göre eşleştirilmiş 11 deprem kaydı etkisi altında zaman tanım alanında doğrusal olmayan analizler yapılmıştır. Doğrusal analizlerden elde edilen tasarım kesme kuvvetleri ve doğrusal olmayan analizlerden elde edilen kesme talepleri, incelenen dikdörtgen ve L-kesitli perdelerin yükseklikleri boyunca karşılaştırılmıştır. Çalışma sonucunda, L-kesitli perdede hesaplanan tasarım kesme kuvvetinin talep değerini karşılamada yetersiz kaldığı görülmüştür. Betonarme perdelerin kesme talepleri, modifiye edilmiş modal süperpozisyon yaklaşımı (MMS) ile de hesaplanmış ve bu yaklaşımın TBDY-2018’e uygulanabilirliği incelenen perdeler üzerinde test edilmiştir.

Investigation of Shear Safety in Reinforced Concrete Walls According to TBEC-2018

This study investigates the adequacy of the design shear force in reinforced concrete walls according to the Turkish Building Earthquake Code 2018 (TBEC-2018). For this purpose, linear and nonlinear analyses are conducted in a 20-story building, of which lateral load resisting system consists of reinforced concrete frames and shear walls with a high ductility level. First, the force-based design of the 20-story building is carried out using response spectrum analysis. Then, nonlinear time history analyses (NLTHA) are performed on the building under eleven ground motions matched to the elastic design spectrum. Lastly, design shear forces from linear analysis and shear demands from nonlinear analyses are compared along the heights of the walls with rectangular and L-shaped cross-sections. The study reveals that the design shear force of the L-shaped shear wall is insufficient to meet the demand value. The shear demands of reinforced concrete walls are also calculated by the modified modal superposition approach (MMS), and the applicability of this approach to TBEC-2018 is tested on the shear walls examined.

___

  • Kocaeli Üniversitesi, 6 Şubat 2023 Kahramanmaraş Depremleri Saha İnceleme Raporu, KÜV Yayınları Nisan-2023, https://www.kocaeli.edu.tr/KOU_DEPREM_RAPORU1.pdf.
  • Bursa Teknik Üniversitesi, Deprem Mühendisliği Uygulama ve Araştırma Merkezi, 6 Şubat 2023 Kahramanmaraş Depremleri İnceleme ve Değerlendirme Raporu, 2023/02, https://depo.btu.edu.tr/dosyalar/deprem/Dosyalar/BT%C3%9C%20DEPREM%20RAPORU_V18.pdf.
  • Blakeley, R.W.G., Cooney, R.C., Megget, L.M., Seismic Shear Loading at Flexural Capacity in Cantilever Wall Structures, Bull. N. Z. Soc. Earth. Eng., 8(4), 278-290, 1975.
  • Eibl, J., Keintzel, E., Seismic Shear Forces in RC Cantilever Shear Walls, Proceedings of Ninth World Conference on Earthquake Engineering, Kyoto, Japan, 1988.
  • Paulay, T., Priestley, M.J.N., Seismic Design of Reinforced Concrete and Masonry Buildings, John Wiley & Sons, New York, 1992.
  • Krawinkler, H., Importance of Good Nonlinear Analysis, Struct. Des. Tall Spec. Build., 15(5), 515-531, 2006.
  • NZS 3101, The Design of Concrete Structures (Parts 1&2), New Zealand Standard, Wellington, 1995.
  • Eurocode 8, Design of Structures for Earthquake Resistance - Part 1: General Rules, Seismic Actions and Rules for Buildings, European Committee for Standardization, Brussels, 2004.
  • CSA A23.3, Design of Concrete Structures, Canadian Standards Association, Ontario, 2004.
  • ACI 318M-19, Building Code Requirements for Structural Concrete and Commentary, American Concrete Institute, Farmington Hills, MI, 2019.
  • Priestley, M.J.N., Does Capacity Design Do the Job? An Examination of Higher Mode Effects in Cantilever Walls, Bull. N. Z. Soc. Earth. Eng., 36(4), 276-292, 2003.
  • NZS 4203, Code of Practice for the General Structural Design and Design Loadings for Buildings, New Zealand Standard, Wellington, 1992.
  • Sullivan, T.J., Priestley, M.J.N, Calvi, G.M., Estimating the Higher-Mode Response of Ductile Structures, J. Earth. Eng., 12(3), 456-472, 2008.
  • Rutenberg, A., Nsieri, E., The Seismic Shear Demand in Ductile Cantilever Wall Systems and the EC8 Provisions, Bull. Earth. Eng., 4, 1-21, 2006.
  • Boivin, Y., Paultre, P., Seismic Force Demand on Ductile Reinforced Concrete Shear Walls Subjected to Western North American Ground Motions: Part 2 – New Capacity Design Methods, Can. J. Civ. Eng., 39(7), 738-750, 2012.
  • Luu, H., Léger, P., Tremblay, R., Seismic Demand of Moderately Ductile Reinforced Concrete Shear Walls Subjected to High-Frequency Ground Motions, Can. J. Civ. Eng., 41(2), 125-135, 2014.
  • NBCC-2010, National Building Code of Canada, National Research Council of Canada, Ottawa, 2010.
  • Leng, K., Chintanapakdee, C., Hayashikawa, T., Seismic Shear Forces in Shear Walls of a Medium-Rise Building Designed by Response Spectrum Analysis, Eng. J., 18(4), 73-95, 2014.
  • Najam, F.A., Warnitchai, P., A Modified Response Spectrum Analysis Procedure to Determine Nonlinear Seismic Demands of High‐Rise Buildings with Shear Walls, Struct. Des. Tall Spec. Build., 27(1), 1-19, 2017.
  • Khy, K., Chintanapakdee, C., Warnitchai, P., Wijeyewickrema, A.C., Eng. Struct., 180, 295-309, 2019.
  • ACI 318M-14, Building Code Requirements for Structural Concrete and Commentary, American Concrete Institute, Farmington Hills, 2014.
  • Fatemi, H., Paultre, P., Lamarche, C.P., Experimental Evaluation of Inelastic Higher-Mode Effects on the Seismic Behavior of RC Structural Walls, J. Struct. Eng., 146(4), 1-15, 2020.
  • Chaallal, O., Gauthier, D., Seismic Shear Demand on Wall Segments of Ductile Coupled Shear Walls, Can. J. Civ. Eng., 27(3), 506-522, 2000.
  • Fox, M.J., Sullivan, T.J., Beyer, K., Capacity Design of Coupled RC Walls, J. Earth. Eng., 18(5), 735-758, 2014.
  • Rivard, G., Ambroise, S., Paultre, P., Inelastic seismic shear amplification due to higher mode effects in reinforced concrete coupled walls, Earthquake Spectra, 38(2), 1357-1381, 2021.
  • DBYBHY-2007, Deprem Bölgelerinde Yapılacak Binalar Hakkında Yönetmelik, Bayındırlık ve İskân Bakanlığı, Ankara, 2007.
  • Kazaz, İ, Gülkan, P., Dynamic Shear Force Amplification in Regular Frame–Wall Systems, Struct. Des. Tall Spec. Build., 25(2), 112–135, 2016.
  • Seckin, A., Doran, B., A new approach for the computation of design shear force in reinforced concrete walls subjected to seismic loads, Struct. Des. Tall Spec. Build., 32(2), e1998, 2023.
  • TBDY-2018, Türkiye Bina Deprem Yönetmeliği, Afet ve Acil Durum Yönetimi Başkanlığı, Ankara, 2018.
  • Rad, B.R., Seismic Shear Demand in High-Rise Concrete Walls, Ph.D. Dissertation, The University of British Columbia, The Faculty of Graduate Studies (Civil Engineering), Vancouver, 2009.
  • Kappos, A.J., Antoniadis, P.S., Evaluation and Suggestions for Improvement of Seismic Design Procedures for R/C Walls in Dual Systems, Earthq. Eng. Struct. Dyn., 40(1), 35-53, 2010.
  • Dezhdar, E., Seismic Response of Cantilever Shear Wall Buildings, Ph.D. Dissertation, The University of British Columbia, The Faculty of Graduate Studies (Civil Engineering), Vancouver, 2012.
  • Derecho, A., Corley, W., Design Requirements for Structural Walls in Multistory Buildings, Proceedings of the Eighth World Conference on Earthquake Engineering, San Francisco, California, 1984.
  • NEHRP, Recommended Provisions for Seismic Regulations for New Buildings and Other Structures (FEMA 450), Building Seismic Safety Council, Washington, 2003.
  • AFAD, Afet Acil Durum Yönetimi Başkanlığı, https://tdth.afad.gov.tr/TDTH/main.xhtml.
  • SAP2000 v23, Structural and Earthquake Engineering Software, Computers & Structures, California.
  • Loo, C.H., Guan, H., Cracking and Punching Shear Failure Analysis of RC Flat Plates, J. Struct. Eng., 123(10), 1321-1330, 1997.
  • Miao, Z.W., Lu, X. Z., Jiang, J.J., Ye, L.P., Nonlinear FE Model for RC Shear Walls Based on Multi-Layer Shell Element and Micro-plane Constitutive Model, Computational Methods in Engineering & Science, Berlin, Heidelberg, Tsinghua University Press & Springer, 2006.
  • Guan H., Loo C.H., Flexural and Shear Failure Analysis of Reinforced Concrete Slabs and Flat Plates, Adv. Struct. Eng., 1(1), 71-85, 1997.
  • Mander, J.B., Priestley, M.J.N., Park R., Observed Stress Strain Behavior of Confined Concrete, J. Struct. Eng., 114(8), 1827-1849, 1988.
  • Massicotte, B., Elwi, A.E., MacGregor, J.G., Tension stiffening model for planar reinforced concrete members, J. Struct. Eng., 116(11), 3039-3058, 1990.
  • Somerville, P.G., Smith, N. F., Graves, R.W., Abrahamson N.A., Modification of Empirical Strong Ground Motion Attenuation Relations to Include the Amplitude and Duration Effects of Rupture Directivity, Seismol. Res. Lett. 68(1), 199-222, 1997.
  • PEER, Pacific Earthquake Engineering Research Center, PEER Ground Motion Database, California, http://peer.berkeley.edu/smcat/.
  • SeismoMatch version 2018 (Academic License), Earthquake Engineering Software Solutions, Seismosoft.