Green synthesis of Fe3O4 nanoparticles by one-pot saccharide-assisted hydrothermal method

A saccharide-assisted hydrothermal route starting from a single iron precursor was employed to study the influence of reducing saccharides on the formation of iron oxide (Fe3O4) nanoparticles (NPs). Fe3O4 NPs, which were confirmed by X-ray diffraction analysis, were successfully synthesized by a hydrothermal method in which mannose, maltose, lactose, and galactose served as reducing agents. The formation of Fe3O4 NPs was also confirmed by Fourier transform infrared spectroscopy. Samples exhibited different crystallite sizes estimated based on line profile fitting as 12 \pm 2, 9 \pm 2, 13 \pm 3, and 9 \pm 3 nm for mannose, maltose, lactose, and galactose, respectively. Magnetic characterization results revealed superparamagnetic features of the NPs obtained with galactose, mannose, and maltose.

Green synthesis of Fe3O4 nanoparticles by one-pot saccharide-assisted hydrothermal method

A saccharide-assisted hydrothermal route starting from a single iron precursor was employed to study the influence of reducing saccharides on the formation of iron oxide (Fe3O4) nanoparticles (NPs). Fe3O4 NPs, which were confirmed by X-ray diffraction analysis, were successfully synthesized by a hydrothermal method in which mannose, maltose, lactose, and galactose served as reducing agents. The formation of Fe3O4 NPs was also confirmed by Fourier transform infrared spectroscopy. Samples exhibited different crystallite sizes estimated based on line profile fitting as 12 \pm 2, 9 \pm 2, 13 \pm 3, and 9 \pm 3 nm for mannose, maltose, lactose, and galactose, respectively. Magnetic characterization results revealed superparamagnetic features of the NPs obtained with galactose, mannose, and maltose.

___

  • He, Z.; Fang, Y.; Wang, X.; Pang, H. Synth. Met. 2011, 161, 420–425.
  • G´omez, H.; Ram, M. K.; Alvi, F.; Villalba, P.; Stefanakos, E.; Kumar, A. J. Power Sources 2011, 196, 4102–4108.
  • Rajesh, T.; Ahuja, D.; Kumar, D. Sens. Actuators B 2009, 136, 275–286.
  • Jafarzadeh, S.; Adhikari, A.; Sundall, P. E.; Pan, J. Prog. Org. Coat. 2011, 70, 108–115.
  • Lu, X.; Zhang, W.; Wang, C.; Wen, T. C.; Wei, Y. Prog. Polym. Sci. 2011, 36, 671–712.
  • Karao˘glu, E.; Baykal, A.; Delig¨oz, H.; S¸enel, M.; S¨ozeri, H.; Toprak, M. S. J. Alloys Compd. 2011, 509, 8460–8468.
  • Karaoglu, E.; Baykal, A.; Erdemi, H.; Alpsoy, L.; Sozeri, H. J. Alloys Compd. 2011, 509, 9218–9225.
  • Temizel, E.; Ayan, E.; Senel, M.; Erdemi, H.; Yavuz, M. S.; Kavas, H.; Baykal, A.; ¨Ozt¨urk, R. Mater. Chem. Phys. 2011, 131, 284–291.
  • Karaoglu, E.; Kavas, H.; Baykal, A.; Toprak, M. S.; S¨ozeri, H. Nano-Micro Lett. 2011, 3, 79–85.
  • Kemikli, N.; Kavas, H.; Kazan, S.; Baykal, A.; Ozturk, R. J. Alloys Compd. 2010, 502, 439–444.
  • Si, F.; Li, C. H.; Wang, X.; Yu, D.; Peng, Q.; Li, Y. D. Cryst. Growth Des. 2005, 5, 391–393.
  • Sun, S. H.; Zeng, H. J. Am. Chem. Soc. 2002, 124, 8204–8205.
  • Ozkaya, T.; Toprak, M. S.; Baykal, A.; Kavas, H.; K¨oseo˘glu, Y.; Akta¸s, B. J. Alloys Compd. 2009, 472, 18–23. ¨
  • Tang, N. J.; Zhong, W.; Jiang, H. Y.; Wu, X. L.; Liu, W.; Du, Y. W. J. Magn. Magn. Mater. 2004, 282, 92–95.
  • Wang, P.; Lee, C.; Young, T. J. Polym. Sci., Part A: Polym. Chem. 2005, 43, 1342–1356.
  • Cain, J. L.; Harrison, S. R.; Nikles, J. A.; Nikles, D. E. J. Magn. Magn. Mater. 1996, 155, 67–69.
  • Qian, Y.; Wang, C.; Le, Z. G., Appl. Surf. Sci. 2011, 257, 10758–10762.
  • Hou, Y. L.; Hiroshi, K.; Masatsugu, S.; Erika, O. S.; Noriaiki, O.; Toshihiro, K.; Toshiaki, O. J. Phys. Chem. B. 2005, 109, 4845–4852.
  • Mondal, K.; Lorethova, H.; Hippo, E.; Wiltowski, T.; Lalvani, S. B. Fuel Process. Technol. 2004, 86, 33–47.
  • Jian, P.; Yahui, H.; Yang, W.; Linlin, L. J. Membr. Sci. 2006, 284, 9–16.
  • Kharissova, O. V.; Dias, H. V. R.; Kharisov, B. I.; P´erez, B. O.; P´erez, V. M. J. Trends Biotechnol. 2013, 31, 240–248.
  • Panigrahi, S.; Kundu, S.; Kumar, S.; Nath, S.; Pal, T. Colloids Surf. A 2005, 264, 133–138.
  • Lartigue, L.; Oumzil, K.; Guari, Y.; Larionova, Gu´erin, J. C.; Montero, J. L.; Montero, V. B.; Sangregorio, C.; Caneschi, A.; Innocenti, C.; et al. Org. Lett. 2009, 11, 2992–2995.
  • Shimomura, M.; Ono, B.; Oshima, K.; Miyauchi, S. Polymer 2006, 47, 5785–5790.
  • El-Boubbou, K.; Gruden, C.; Huang, X. J. Am. Chem. Soc. 2007, 129, 13392–13393.
  • Astete, C. E.; Kumar, C. S. S. R.; Sabilov, C. M. Coll., Surf. A: Physicochem. Eng. Aspects 2007, 299, 209–216.
  • Horac, D.; Babic, M.; Jendelova, P.; Herynek, V.; Trchova, M.; Pientka, Z.; Pollert, E.; Sykova, E. Bioconjugate Chem. 2007, 18, 635–644.
  • Gittleman, J. I.; Abeles, B.; Bozowski, S. Physical Review B 1974, 9, 3891–3897.
  • Kumar, A.; Tandon, R. P.; Awana, V. P. S. J. Magn. Magn. Mater 2014, 349, 224–231.
  • Wejrzanowski, T.; Pielaszek, R.; Opalinska, A.; Matysiak, H.; Lojkowski, W.; Kurzydlowski, K. J. Appl. Surf. Sci. 2006, 253, 204–208.
  • Pielaszek, R. Analytical expression for diffraction line profile for polydispersive powders, Appl. Crystallography, Proceedings of the XIX Conference, Krakow, Poland, 2003, 43–50.
  • Kenouche, S.; Larionova, J.; Bezzi, N.; Guari, Y.; Bertin, N.; Zanca, M.; Lartigue, L.; Cieslak, M.; Godin, C.; Morrot, G. Powder Technology 2014, 255, 60–65 .
  • Lu, W.; Shen, Y.; Xie, A.; Zhang, W. J. Magn. Magn. Mater 2010, 322, 1828–1933.
  • Sun, X.; Zheng, C.; Zhang, F.; Yang, Y.; Wu, G.; Yu, A.; Guan, N. J. Phys. Chem. C 2009, 113, 16002–16006.
  • Angyal, S. J. In Glycoscience: Epimerisation, Isomerisation and Rearrangement Reactions of Carbohydrates, Vol. 215; St¨utz, A. E., Ed. Springer-Verlag: Berlin, Germany, 2001, pp. 1–14.
  • Daniel J.; Reducing sugar structure, http://www.cfs.purdue.edu/fn/fn453/pdf full/Reducing sugar structure.pdf (Accessed on April 30, 2014).
  • Shafi, K. V. P. M.; Ulman, A.; Yan, X.; Yang, N. L.; Estourn`es, C.; White, H.; Rafailovich, M. Langmuir 2001, 17, 5093–5097.
  • Tao, Y. T. J. Am. Chem. Soc. 1993, 115, 4350–4358.
  • Xuan, S.; Hao, L.; Jiang, W.; Gong, X.; Hu, Y.; Chen, Z. J. Magn. Magn. Mater. 2007, 308, 210–213.
  • Zhang, L.; He, R.; Gu, H. C. Appl. Surf. Sci. 2006, 253, 2611–2617.
  • Demir, A.; Topkaya, R.; Baykal, A. Polyhedron 2013, 65, 282–287.
  • Zhang, M.; Zhang, Q.; Itoh, T.; Abe, M. IEEE Trans. Magn. 1994, 30, 4692–4694.
  • Kodama, R. H.; Berkowitz, A. E.; McNiff, E. J.; Foner, S. Phys. Rev. Lett. 1996, 77, 394–397.
  • Batlle, X.; Labarta, A. J. Phys. D: Appl. Phys. 2002, 35, R15–R42.
Turkish Journal of Chemistry-Cover
  • ISSN: 1300-0527
  • Yayın Aralığı: Yılda 6 Sayı
  • Yayıncı: TÜBİTAK
Sayıdaki Diğer Makaleler

Synthesis of tertiary propargylic phosphonates by addition of trialkynylaluminum reagents to acyl phosphonates and investigation of their antimicrobial activities

Mohammad Shakhawoat HOSSAIN, Sıdıka POLAT ÇAKIR\dag, Ayşe Betül KARADUMAN

Study on transportation of phenol through a nanotubule membrane

Yue LIU, Li XIE, Xiaoxue FAN, Dingyan FAN, Shasheng HUANG

Ultrarapid catalytic reduction of some dyes by reusable novel erythromycin-derived silver nanoparticles

Yasmeen JUNEJO, Abdulhadi BAYKAL

Graphite oxide as an efficient solid reagent for esterification reactions

Maryam MIRZA-AGHAYAN, Rabah BOUKHERROUB, Mahshid RAHIMIFARD

Effects of functional groups of triple bonds containing molecules on nickel electroplating

Esma SEZER, Belkıs USTAMEHMETOĞLU, Ramazan KATIRCI

N-Heterocyclic carbene (NHC) palladium(II) complexes bearing chiral oxazoline ligands and their catalytic activities in allylic alkylation reactions

Serpil DENİZALTI, Hayati TÜRKMEN, Bekir ÇETİNKAYA

Synthesis and characterization of magnesium borate minerals of admontite and mcallisterite obtained via ultrasonic mixing of magnesium oxide and various sources of boron: a novel method

Azmi Seyhun KIPÇAK, Emek Moroydor DERUN, Sabriye PİŞKİN

Graphene oxide magnetite nanocomposite as an efficient and magnetically separable adsorbent for methylene blue removal from aqueous solution

Kadem MERAL, Önder METIN

Binding of flavanone with β -CD/ctDNA: a spectroscopic investigation

Chandrasekaran SOWRIRAJAN, Sameena YOUSUF, Muthu Vijayan Enoch VIJAYARAJ ISRAEL

Synthesis, anticandidal activity, and cytotoxicity of some thiazole derivatives with dithiocarbamate side chains

Leyla YURTTAŞ, Yusuf ÖZKAY, Fatih DEMİRCİ, Gamze GÖGER, Şafak Ulusoylar YILDIRIM, Usama ABU MOHSEN, Ömer ÖZTÜRK, Zafer Asım KAPLANCIKLI