The Synthesis and Antimicrobial Activity of \\\g-Butyrolactone Derivatives

This paper examines the synthesis of g-butyrolactone compounds 2, 3, 4, 5, and 9, and their potential antimicrobial nature and ability. The structures of all the compounds mentioned above were determined and confirmed with elemental analyses, and IR, 1H-NMR, and 13C-NMR spectroscopy. The in vitro antimicrobial activity of compounds 2, 3, 4, 5, and 9 was examined and evaluated against the following pathogens: Enterobacter aerogenes, Enterobacter cloacae, Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus, Staphylococcus epidermidis, Streptococcus agalactiae, Aspergillus niger, and Candida albicans. Compound 5 (20 mg/mL) demonstrated high antimicrobial activity against S. epidermidis, which was closely comparable to the antimicrobial activity of streptomycin.

The Synthesis and Antimicrobial Activity of \\\g-Butyrolactone Derivatives

This paper examines the synthesis of g-butyrolactone compounds 2, 3, 4, 5, and 9, and their potential antimicrobial nature and ability. The structures of all the compounds mentioned above were determined and confirmed with elemental analyses, and IR, 1H-NMR, and 13C-NMR spectroscopy. The in vitro antimicrobial activity of compounds 2, 3, 4, 5, and 9 was examined and evaluated against the following pathogens: Enterobacter aerogenes, Enterobacter cloacae, Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus, Staphylococcus epidermidis, Streptococcus agalactiae, Aspergillus niger, and Candida albicans. Compound 5 (20 mg/mL) demonstrated high antimicrobial activity against S. epidermidis, which was closely comparable to the antimicrobial activity of streptomycin.

___

Hoffmann, H. M. R.; Rabe, J. Angew Chem. 1985, 24, 94-110.

Devon; T. K.; Scott, A. I. Handbook of Naturally Occurring Compounds, Academic Press, New York, Vol. 1, pp 249-250, 1975.

Yang, X.; Shimizu, Y.; Steiner, J. R.; Clardy, J. Tetrahedron Lett. 1993, 34, 761.

Davidson, B. S.; Ireland, C. M. J. Nat. Prod. 1990, 53, 1036.

Kazlauskas, R.; Murphy, P. T.; Quinn, R. J.; Wells, R. J. Tetrahedron Lett. 1977, 18, 37.

Pettus, J. A. Jr.; Wing, R. M.; Sims, J. J. Tetrahedron Lett. 1977, 18, 41.

Hung, T. V.; Mooney, B. A.; Prager, R. H.; Tippett, J. M. Aus. J. Chem. 1981, 34, 383-395.

Gammill, R. B.; Wilson, C. A.; Bryson, T. A. Synth. Commun. 1975, 5, 245-251.

Grieco, P. A. Synthesis 1975, 67-82.

Grieco, P. A.; Noguesz, J.A; Masaki, Y.; Hiroi, K.; Nishizawa, I. J. Med. Chem. 1977, 20, 71-76.

Huang, S.; Piantadosi, C.; Pagano, J. S.; Geissman, T. A.; Lee, K. H. Cancer. Res. 1971, 31, 1649-1656. Rao, Y. S. Chem. Rev. 1976, 76, 625-694.

Pelter, A.; Satyanarayana, P.; Ward, R. S. Tetrahedron Lett. 1981, 22, 1549-1550.

Geissman, T. A.; Irwin, M. A. Pure and Appl. Chem. 1970, 21, 167-180.

Howie, G. A.; Stamos I. K.; Cassady, J. M. J. Med. Chem. 1976, 19, 309-313.

Kupchan, S. M.; Earkin, M. A.; Thomas, A. M. J. Med. Chem. 1971, 14, 1147-1152.

Askin, D.; Wallace, M. A.; Vacca, J. P.; Reamer, R. A.; Volante, R. P.; Shinkai, I. J. Org. Chem. 1992, 57, 2773.

Chamberlain, R.; Koch, C. J. Org. Chem. 1993, 58, 2725-2737 and references therein.

Lee, K.; Choi, Y.; Gullen, S.; Wirtz, S. S.; Schinazi, R. F.; Cheng, Y. C.; Chu, C. K. J. Med. Chem. 1999, 42, 1328.

Garcıa, C.; Martin T.; Martin, V. S. J. Org. Chem. 2001, 66, 1420-1428.

DEPT13C NMR: Quaternary carbons are not observed, while others are positive, negative, or null depending on the “angle” (45, 90, 135) used in the experiment. This technique effectively identiŞes the most basic ◦ ◦ ◦ structural units: C, CH, CH2, and CH3. Kavanagh, F. Analytical microbiology, Acad. Press, New York, 1972.

NCCLS, Performance Standards for Antimicrobial Disk Susceptibility Tests. Approved Standard NCCLS Publication M2/A4, Villanova, PA, USA, 1990.

Bhalerao, U. T.; Rapopart, H. J. Am. Chem. Soc. 1971, 93, 4835-4940.

Solujic, S.; Sukdolak S.; Ratkovic, Z. Tetrahedron Lett. 1991, 32, 4577-4578.

Shoppee, C. W.; Krueger, G. J. Chem. Soc. 1961, 3641-3655.

Conley, R. T.; Longe, R. J. J. Org. Chem. 1963, 28, 210-214.

Oka, K.; Hore, S. J. Org. Chem. 1978, 43, 3790-3791.

Suginome, H.; Kaji M.; Yamada, S. J. Chem. Soc., Perkin Trans. 1988, 1, 321-326.

Turkish Journal of Chemistry-Cover
  • ISSN: 1300-0527
  • Yayın Aralığı: 6
  • Yayıncı: TÜBİTAK
Sayıdaki Diğer Makaleler

Langmuir Aggregation of Congo Red on CPC and Its Application

Xiang-hu LIU, Jiao-rong REN, Ya-nan HUANG, Jing BAI, Hong-wen GAO

The Synthesis and Antimicrobial Activity of \\\g-Butyrolactone Derivatives

Slobodan SUKDOLAK, Slavica SOLUJIC, Nenad VUKOVIC, Tanja MILOSEVIC

Thermal Decomposition of Metal Complexes of Type MLX2 (M = Co(II), Cu(II), Zn(II), and Cd(II); L = DIE; X = NO31-) by TG-DTA-DTG Techniques in Air Atmosphere

Muhammad ARSHAD, Ammad Hussain QURESHI

Synthesis and Antifungal Activity of Some Novel N-(4-Phenyl-3-aroylthiazol-2(3H)-ylidene) Substituted Benzamides

Aamer SAEED, Sabah ZAMAN, Maryam JAMIL, Bushra MIRZA

Preparation and Potentiometric Study of Promethazine Hydrochloride Selective Electrodes and Their Use in Determining Some Drugs

Nabil S. NASSORY, Shahbaz A. Maki And Bashaer A. AL-PHALAHY, Shahbaz A. MAKI

Potentiometric Utility of the New Solid-State Sensor Based on Crowned Ionophore for the Determination of K+

Barış KEMER, Mustafa ÖZDEMİR

On-line Incorporation of Cloud Point Extraction in Flame Atomic Absorption Spectrometric Determination of Silver

Nasser DALALI, Nasrin JAVADI, Yadvendra Kumar AGRAWAL

The synthesis and antimicrobial activity of $gamma$- butyrolactone derivatives

Tanja MILOSEVIC, Slavica SOLUJIC, Slobodan SUKDOLAK, Nenad VUKOVIC

Synthesis and Selective Extractant Properties of a Calixarene Thioether Derivative and its Oligomeric Analogue

Gülderen Uysal AKKUŞ, Selma ASLAN, F. Fulya Taktak AND

Hydrogenation of Citral over Ni and Ni-Sn Catalysts

Hilal AYKAÇ, Selahattin YILMAZ