Hydrogenation of Citral over Ni and Ni-Sn Catalysts

Liquid phase citral hydrogenation over zeolite-supported monometallic Ni and bimetallic Ni-Sn catalysts was studied. The zeolite support materials were Na-Y, Na-mordenite, and clinoptilolite. Ni and Sn contents of the monometallic and bimetallic catalysts were 8.1-9.2 wt% and 0.46 wt%, respectively. The type of the zeolite support affected the activity and selectivity of the catalysts differently. The main product of the citral hydrogenation reaction was citronellal, for both monometallic (84.5% yield) and bimetallic (44.5% yield) catalysts. The addition of promoter increased the selectivity to unsaturated alcohols (geraniol+nerol), i.e. it changed from 0.9% to 6.3% over mordenite and from 0.9% to 2.1% over Na-Y-supported catalysts. Furthermore, activity of the Ni catalysts decreased while the quantity of acetal remained almost constant. Intimate contact between active metal, promoter, and support, and a catalyst with a high concentration of weak acid sites gave high selectivity to geraniol+nerol.

Hydrogenation of Citral over Ni and Ni-Sn Catalysts

Liquid phase citral hydrogenation over zeolite-supported monometallic Ni and bimetallic Ni-Sn catalysts was studied. The zeolite support materials were Na-Y, Na-mordenite, and clinoptilolite. Ni and Sn contents of the monometallic and bimetallic catalysts were 8.1-9.2 wt% and 0.46 wt%, respectively. The type of the zeolite support affected the activity and selectivity of the catalysts differently. The main product of the citral hydrogenation reaction was citronellal, for both monometallic (84.5% yield) and bimetallic (44.5% yield) catalysts. The addition of promoter increased the selectivity to unsaturated alcohols (geraniol+nerol), i.e. it changed from 0.9% to 6.3% over mordenite and from 0.9% to 2.1% over Na-Y-supported catalysts. Furthermore, activity of the Ni catalysts decreased while the quantity of acetal remained almost constant. Intimate contact between active metal, promoter, and support, and a catalyst with a high concentration of weak acid sites gave high selectivity to geraniol+nerol.

___

  • T. Salmi, P. M¨aki-Arvela, E. Toukoniitty, A.K. Neyestanaki, L.P. Tiainen, L.E. Lindfors, R. Sj¨oholm and E. Laine, Appl. Catal. A: Gen. 196, 93-102 (2000).
  • I.M.J. Vilella, S.R. de Miguel, de C.S.M Lecea, ´A. Linares-Solano and O.A. Scelza, Appl. Catal. A: Gen. , 247-258 (2004).
  • M.A Aramendia, V. Borau, C, Jimenez, J.M. Marinas, A. Porras, and F.J. Urbano, J. Catal, 172, 46-54 (1997).
  • A.M. Silva, O.A.A. Santos, M.J. Mendes, E. Jord˜ao, and M.A. Fraga, Appl. Catal. A: Gen. 241, 155-165 (2003).
  • P. M¨aki-Arvela, L. Tiainen, M. Lindblad, K. Demirkan, N. Kumar, R. Sj¨oholm, T. Ollonqvist, J. V¨ayrynen, T. Salmi and D.Yu. Murzin, Appl. Catal. A: Gen. 241, 271–288 (2003).
  • A.B. Da Silva, E. Jordao, M.J. Mendes and P. Fouilloux, Appl. Catal. A: Gen. 148, 253 (1997).
  • J.N. Coup´e, E. Jord˜ao, M.A. Fraga and M.J. Mendes, Appl. Catal. A: Gen. 199, 45-51, (2000).
  • A.P Jansen and R.A. van Santen, J. Phys. Chem. 94, 6764 (1990).
  • S. Recchia, C. Dossi, A. Fusi, L. Sordelli and R. Psaro, Appl. Catal. A: Gen. 182, 41-51 (1999).
  • S. Y ılmaz, S¸. Ucar, L. Artok and H. G¨ule¸c, Appl. Catal. A: General 287, 261-266 (2005).
  • P. Reyes, H. Rojas, G. Pecchi and J.L.G. Fierro, J. Mol. Cat. A: Chem. 179, 293-299 (2002).
  • B. Baeza, I. Rodr´ıguez-Ramos and A. Guerrero-Ruiz, Appl. Catal. A: Gen. 205, 227-237 (2001).
  • L. Sordelli, R. Psaro, G. Vlaic, A. Cepparo, S. Recchia, C. Dossi, F. Achille and Z. Robertino, J. Catal. 182, 198 (1999).
  • G. Blackmond, I.R. Oukaci, B. Blanc and P. Gallezot, J. Catal. 131, 401-411 (1991).
  • A. Romero, A. Garrido, A. Nieto-Marquez, P. Sanchez, A. de Lucas, J.L. Valverde, Micropor. Mesopor. Mater. 110, 318-329, 2008.
  • B. Bachiller-Baeza, A. Guerro-Ruiz, P. Wang, I. Rodrigues-Ramos, J. Catal. 204, 450-459, 2001.
  • J. Aumo, J. Lilja, P. Maki Arvela, T. Salmi, M. Sundell, H. Vainio, D. Yu Murzin, Catal. Lett. 84, 219-224, P. Maki-Arvela, L.P. Tianien, A.K. Neyestanaki, R. Sj¨oholm, T.K. Rantakyla, E. Laine, T. Salmi, D.Yu Murzin, App. Catal. A: Gen 237, 181-200, 2002.
Turkish Journal of Chemistry-Cover
  • ISSN: 1300-0527
  • Yayın Aralığı: Yılda 6 Sayı
  • Yayıncı: TÜBİTAK
Sayıdaki Diğer Makaleler

The Synthesis and Antimicrobial Activity of \\\g-Butyrolactone Derivatives

Slobodan SUKDOLAK, Slavica SOLUJIC, Nenad VUKOVIC, Tanja MILOSEVIC

Langmuir Aggregation of Congo Red on CPC and Its Application

Xiang-hu LIU, Jiao-rong REN, Ya-nan HUANG, Jing BAI, Hong-wen GAO

Thermal Decomposition of Metal Complexes of Type MLX2 (M = Co(II), Cu(II), Zn(II), and Cd(II); L = DIE; X = NO31-) by TG-DTA-DTG Techniques in Air Atmosphere

Muhammad ARSHAD, Ammad Hussain QURESHI

CO Oxidation over Mono and Bi-Metallic Sequentially Impregnated Pd-Pt Catalysts

Sarp KAYA, And Deniz ÜNER

On-line Incorporation of Cloud Point Extraction in Flame Atomic Absorption Spectrometric Determination of Silver

Nasser DALALI, Nasrin JAVADI, Yadvendra Kumar AGRAWAL

Preparation and Potentiometric Study of Promethazine Hydrochloride Selective Electrodes and Their Use in Determining Some Drugs

Nabil S. NASSORY, Shahbaz A. Maki And Bashaer A. AL-PHALAHY, Shahbaz A. MAKI

The synthesis and antimicrobial activity of $gamma$- butyrolactone derivatives

Tanja MILOSEVIC, Slavica SOLUJIC, Slobodan SUKDOLAK, Nenad VUKOVIC

Electrocatalytic Oxidation of Hydroxylamine at a Quinizarine Modified Glassy Carbon Electrode: Application to Differential Pulse Voltammetry Detection of Hydroxylamine

Mohammad MAZLOUMARDAKANI, Payam Ebrahimi KARAMI

Hydrogenation of Citral over Ni and Ni-Sn Catalysts

Hilal AYKAÇ, Selahattin YILMAZ

Thermal decomposition of metal complexes of type $MLX_2$ (M= Co(II), Cu(II), Zn(II), and Cd(II); L= DIE; X = $NO^{1-}_3$) by TG-DTA-DTG techniques in air atmosphere

Saeed- ur REHMAN, Aamer SAEED, Ammad Hussain QURESHI, Riaz AHMED, Muhammad ARIF, Muhammad ARSHAD, Khalid MASUD