Formation and characterization of mechanochemically generated free lignin radicals from olive seeds

Formation and characterization of mechanochemically generated free lignin radicals from olive seeds

In this study, formation and quantification of mechanochemically generated free radicals of lignin were evaluated after the extraction of lignin from olive seeds and detailed lignin characterization was performed. Lignin was extracted from crushed olive seeds as an insoluble solid using Klason method. Isolated lignin was mechanochemically grinded under cryo conditions using Cryomill and particlesizes were determined by using Zeta Sizer, structural changes were followed by XRD and FTIR-ATR; thermal stabilities were tracked by TGA and DSC. In order to enable solubility demanding studies (such as 1 H-NMR and GPC), acylation of lignin was accomplished. ESR measurements were completed to prove the nature of the radicals. Free radicals cavenging activity of olive seed lignin was determined and quantified using 2-diphenyl-1-picrylhydrazyl (DPPH) method. Number of created mechanoradicals (per gram of olive seed lignin) was calculated from the corresponding UV-Vis spectra. Finally, morphological changes of the lignin over cryomilling was evaluated using SEM.

___

  • 1. Atamer Balkan B, Meral S. Olive oil value-chain dynamics: the Turkish olive oil industry case. Acta Horticulturae 2018; 1199: 195-202. doi: 10.17660/ActaHortic.2018.1199.32
  • 2. Rodríguez G, Lama A, Rodríguez R, Jiménez A, Guillén R et al. Olive stone an attractive source of bioactive and valuable compounds. Bioresource Technology 2008; 99 (13): 5261-5269. doi: 10.1016/j.biortech.2007.11.027
  • 3. Heredia-Moreno A, Guillén-Bejarano R, Fernández-Bolaños J, Rivas-Moreno M. Olive stones as a source of fermentable sugars. Biomass 1987; 14 (2): 143-148. doi: 10.1016/0144-4565(87)90016-3
  • 4. Gregorova A, Košíková B, Staško A. Radical scavenging capacity of lignin and its effect on processing stabilization of virgin and recycled polypropylene. Journal of Applied Polymer Science 2007; 106 (3): 1626-1631. doi: 10.1002/app.26687
  • 5. Lu FJ, Chu LH, Gau RJ. Free radical-scavenging properties of lignin. Nutrition and Cancer 1998; 30 (1): 31-38. doi: 10.1080/01635589809514637
  • 6. Lu Q, Liu W, Yang L, Zu Y, Zu B et al. Investigation of the effects of different organosolv pulping methods on antioxidant capacity and extraction efficiency of lignin. Food Chemistry 2012; 131 (1): 313-317. doi: 10.1016/j.foodchem.2011.07.116
  • 7. Kirschweng B, Tátraaljai D, Földes E, Pukánszky B. Natural antioxidants as stabilizers for polymers. Polymer Degradation and Stability 2017; 145: 25-40. doi: 10.1016/j.polymdegradstab.2017.07.012
  • 8. Ten E, Vermerris W. Recent developments in polymers derived from industrial lignin. Journal of Applied Polymer Science 2015; 132 (24). doi: 10.1002/app.42069
  • 9. Lora JH, Glasser WG. Recent industrial applications of lignin: a sustainable alternative to nonrenewable materials. Journal of Polymers and the Environment 2002; 10 (1): 39-48. doi: 10.1023/A:1021070006895
  • 10. García A, Toledano A, Andrés MÁ, Labidi J. Study of the antioxidant capacity of miscanthus sinensis lignins. Process Biochemistry 2010; 45 (6): 935-940. doi: 10.1016/j.procbio.2010.02.015
  • 11. El Hage R, Brosse N, Sannigrahi P, Ragauskas A. Effects of process severity on the chemical structure of miscanthus ethanol organosolv lignin. Polymer Degradation and Stability 2010; 95 (6): 997-1003. doi: 10.1016/j.polymdegradstab.2010.03.012
  • 12. Bjorkman A. Studies on finely divided wood. Part 1. Extraction of lignin with neutral solvents. Svensk Pepperstein 1956; 59 (477): 85.
  • 13. Lin SY, Dence CW. Methods in Lignin Chemistry. Berlin, Germany: Springer Berlin Heidelberg, 1992, p. 1.
  • 14. Obst JR, Kirk TK. Isolation of lignin. In: Methods in Enzymology, Biomass Part B: Lignin, Pectin, and Chitin. Academic Press 1988; 161: 3-12. doi: 10.1016/0076-6879(88)61003-2
  • 15. Owen RW, Giacosa A, Hull WE, Haubner R, Spiegelhalder B et al. The antioxidant/anticancer potential of phenolic compounds isolated from olive oil. European Journal of Cancer 2000; 36 (10): 1235-1247. doi: 10.1016/S0959-8049(00)00103-9
  • 16. Lee OH, Lee BY, Kim YC, Shetty K, Kim YC. Radical scavenging-linked antioxidant activity of ethanolic extracts of diverse types of extra virgin olive oils. Journal of Food Science 2008; 73 (7): 519-525. doi: 10.1111/j.1750-3841.2008.00865.x
  • 17. Cabrini L, Barzanti V, Cipollone M, Fiorentini D, Grossi G et al. Antioxidants and total peroxyl radical-trapping ability of olive and seed oils. Journal of Agricultural and Food Chemistry 2001; 49 (12): 6026-6032.
  • 18. Alu’datt MH, Alli I, Ereifej K, Alhamad MN, Alsaad A et al. Optimisation and characterisation of various extraction conditions of phenolic compounds and antioxidant activity in olive seeds. Natural Product Research 2011; 25 (9): 876-889. doi: 10.1080/14786419.2010.489048
  • 19. Urbański T. Formation of solid free radicals by mechanical action. Nature 1967; 216 (5115): 577. doi: 10.1038/216577a0
  • 20. Sakaguchi M, Kashiwabara H. A generation mechanism of triboelectricity due to the reaction of mechanoradicals with mechanoions which are produced by mechanical fracture of solid polymer. Colloid and Polymer Science 1992; 270 (7): 621-626. doi: 10.1007/BF00654038
  • 21. Kleine T, Buendia J, Bolm C. Mechanochemical degradation of lignin and wood by solvent-free grinding in a reactive medium. Green Chemistry 2013; 1. doi: 10.1039/C2GC36456E
  • 22. Kwiczak-Yiğitbaşı J, Laçin Ö, Demir M, Ahan RE, Şeker UÖŞ et al. A sustainable preparation of catalytically active and antibacterial cellulose metal nanocomposites via ball milling of cellulose. Green Chemistry 2020; 22: 455-464. doi: 10.1039/C9GC02781E
  • 23. Özel M, Demir F, Aikebaier A, Kwiczak-Yiğitbaşı J, Baytekin HT et al. Why does wood not get contact charged? lignin as an antistatic additive for common polymers. Chemistry of Materials 2020; 32 (12): 7438-7444. doi: 10.1021/acs.chemmater.0c02421
  • 24. Harman D. Aging: a theory based on free radical and radiation chemistry. Journal of Gerontology 1956; 11 (3): 298-300. doi: 10.1093/ geronj/11.3.298
  • 25. Dai L, Li C, Zhang J, Cheng F. Preparation and characterization of starch nanocrystals combining ball milling with acid hydrolysis. Carbohydrate Polymers 2018; 180: 122-127. doi: 10.1016/j.carbpol.2017.10.015
  • 26. LeCorre D, Bras J, Dufresne A. Evidence of micro- and nanoscaled particles during starch nanocrystals preparation and their isolation. Biomacromolecules 2011; 12 (8): 3039-3046. doi: 10.1021/bm200673n
  • 27. Goudarzi A, Lin L, Ko FK. X-Ray diffraction analysis of kraft lignins and lignin-derived carbon nanofibers. Journal of Nanotechnology in Engineering and Medicine 2014; 5 (2): 021006. doi: 10.1115/1.4028300
  • 28. Asikkala J, Tamminen T, Argyropoulos DS. Accurate and reproducible determination of lignin molar mass by acetobromination. Journal of Agricultural Food Chemistry 2012; 60 (36): 8968-8973. doi: 10.1021/jf303003d
  • 29. Gonçalves A, Schuchardt UF, Bianchi MLP, Curvelo AAS. Piassava fibers (Attalea funifera): NMR spectroscopy of their lignin. Journal of the Brazilian Chemical Society 2000; 11 (5): 491-494. doi: 10.1590/S0103-50532000000500010
  • 30. Nandanwar RA, Chaudhari AR, Ekhe JD. Nitrobenzene oxidation for isolation of value added products from industrial waste lignin. Journal of Chemical, Biological and Physical Sciences 2016; 6 (63): 501-513.
  • 31. Uetake K, Takahashi T. ESR estimation of lignin structure of japanese cedar pulverized using a vibration mill with ring media. Journal of the Japan Institute of Energy 2018; 97 (8): 226-230. doi: 10.3775/jie.97.226
  • 32. Rex RW. Electron paramagnetic resonance studies of stable free radicals in lignins and humic acids. Nature 1960; 188 (4757): 1185. doi: 10.1038/1881185a0
  • 33. Kuzina SI, BrezgunovAYu, Dubinskii AA, Mikhailov AI. Free radicals in the photolysis and radiolysis of polymers: IV. Radicals in γ- and UV-irradiated wood and lignin. High Energy Chemistry 2004; 38 (5): 298-305. doi: 10.1023/B:HIEC.0000041340.45217.bd
  • 34. Seino T, Yoshioka A, Fujiwara M, Chen KL, Erata T et al. Electron spin resonance studies on paramagnetic species produced by milling of woods: detection of phenoxy radicals and Mn2+ ions. Mokuzai Gakkaishi 2000; 46 (4): 342-347.
  • 35. Trubetskaya A, Jensen AD, Andersen ML, Barsberg ST. Title characterization of free radicals by electron spin resonance spectroscopy in biochars from pyrolysis at high heating rates and at high temperatures. Biomass and Bioenergy 2016; 94: 117-129. doi: 10.1016/j. biombioe.2016.08.020
  • 36. Petrakis L, Grandy DW. Electron spin resonance spectrometric study of free radicals in coals. Analytical Chemistry 1978; 50 (2): 303-308. doi: 10.1021/ac50024a034
  • 37. Blois MS. Antioxidant Determinations by the Use of a Stable Free Radical. Nature 1958; 181: 1199-1200. doi: 10.1038/1811199a0
  • 38. Brand-Williams W, Cuvelier ME, Berset C. Use of a free radical method to evaluate antioxidant activity. LWT - Food Science and Technology 1995; 28 (1): 25-30. doi: 10.1016/S0023-6438(95)80008-5
  • 39. Glennie DW, McCarthy JL. Chemistry of lignin. New York, NY, USA: McGraw-Hill Book Company, Inc., 1962.
  • 40. Tappi T222 om-88. TAPPI Test Method T222 Om-88, Acid-Insoluble Lignin in Wood and Pulp. In: Tappi Test Methods. Atlanta, GA: Technical Association of the Pulp and Paper Industry.