The protective role of melatonin under heavy metal-induced stress in Melissa Officinalis L.

The protective role of melatonin under heavy metal-induced stress in Melissa Officinalis L.

Heavy metals, due to their inability to degrade, pose a serious environmental and nutritional problem. The accumulation of essential and non-essential heavy metals in living organisms reduces normal growth and development, resulting in acute poisoning, disease and even death of organisms. Melatonin is a very important multifunctional molecule in protecting plants from oxidative stress due to its ability to directly neutralize reactive oxygen species (ROS). Also, melatonin has a chelating property, which may contribute in reducing metal-induced toxicity. In this paper, the protective role of melatonin in counteracting metal-induced free radical generation was highlighted. Using the HPLC-FLD technique melatonin was identified and quantified in the roots and leaves of lemon balm (Melissa officinalis L.), grown under photoperiod conditions. Furthermore, the response of plants pre-treated with exogenous 0.1 mM melatonin to the increased zinc (Zn) and cadmium (Cd) concentrations was observed, with changes in mineral (Ca, Mg), physiological and antioxidant status of the plant during heavy metals stress. The obtained melatonin concentrations were the highest published for dry plants so far. Elevated Cd and Zn levels in soil caused alternation in biochemical and physiological parameters of lemon balm leaves and roots. However, melatonin pre-treatment increased plant tolerance to heavy metals stress. Increased Cd and Zn uptake and their translocation into the leaves were also improved, indicating the possible use of melatonin in phytoremediation.

___

  • 1. Arnao MB, Hernandez-Ruiz J. Functions of melatonin in plants: a review. Journal of Pineal Research 2015; 59: 133-150. doi: 10.1111/ jpi.12253
  • 2. Hattori A, Migitaka H, Masayaki I, Itoh M, Yamamoto K et al. Identification of melatonin in plant seed its effects on plasma melatonin levels and binding to melatonin receptors in vertebrates. Biochemistry and Molecular Biology International 1995; 35: 627-634.
  • 3. Dubbels R, Reiter RJ, Klenke E, Goebel A, Schnakenberg E, Ehlers C et al. Melatonin in edible plants identified by radioimmunoassay and by high performance liquid chromatography–mass spectrometry. Journal of Pineal Research 1995; 18: 28-31. doi: 10.1111/j.1600- 079x.1995.tb00136.x
  • 4. Zohar R, Izhaki I, Koplovich A, Ben-Shlomo R. Phytomelatonin in the leaves and fruits of wild perennial plants. Phytochemistry Letters 2011; 4: 222-226. doi: 10.1016/j.phytol.2011.04.002
  • 5. Hardeland R, Pandi-Perumal SR, Poeggeler B. Melatonin in plants—focus on a vertebrate night hormone with cytoprotective properties. Functional Plant Science and Biotechnology 2007; 1: 32-45.
  • 6. Shen S, Li X-F, Cullen WR, Michael Weinfeld MX, Le C. Arsenic Binding to Proteins. Chemical Reviews 2013; 113: 7769-7792. doi: 10.1021/cr300015c
  • 7. Zhang N, Zhang HJ, Zhao B, Sun QQ, Cao YY et al. The RNA-seq approach to discriminate gene expression profiles in response to melatonin on cucumber lateral root formation. Journal of Pineal Research 2014; 56: 39-50. doi: 10.1111/jpi.12095
  • 8. Byeon Y, Back K. An increase in melatonin in transgenic rice causes pleiotropic phenotypes, including enhanced seedling growth, delayed flowering and low grain yield. Journal of Pineal Research 2014; 56: 408-414. doi: 10.1111/jpi.12129
  • 9. Zhang N, Sun Q, Zhang H, Cao Y, Weeda S et al. Roles of melatonin in abiotic stress resistance in plants. Journal of Experimental Botany 2015; 66: 647-656. doi: 10.1093/jxb/eru336
  • 10. Shi H, Jiang C, Ye T, Tan DX, Reiter RJ et al. Comparative physiological, metabolomic, and transcriptomic analyses reveal mechanisms of improved abiotic stress resistance in bermudagrass [Cynodon dactylon (L). Pers.] by exogenous melatonin. Journal of Experimental Botany 2015; 66: 681-694. doi: 10.1093/jxb/eru373
  • 11. Li Y, Yang Y, Feng Y, Yan J, Fan C. A review of melatonin in hepatic ischemia/reperfusion injury and clinical liver disease. Annals of Medicine 2014; 46: 503-511. doi: 10.3109/07853890.2014.934275
  • 12. Namdjoyana SH, Khavari Nejada RA, Bernardb F, Nejadsattaria T, Shakerb H. Antioxidant defense mechanisms in response to cadmium treatments in two safflower cultivars. Russian Journal of Plant Physiology 2011; 58 (3): 467-477. doi: 10.1134/S1021443711030149
  • 13. Chen X, Ahn DU. Antioxidant activities of six natural phenolics against lipid oxidation induced by Fe2+ or ultraviolet light. Journal of the American Oil Chemists’ Society 1998; 75: 1717-1721. doi: 10.1007/s11746-998-0322-2
  • 14. Vidović M, Morina F, Veljović Jovanović S. Stimulation of various phenolics in plants under ambient UV‐B radiation. In: Singh VS, Singh S, Prasad SM Parihar P. UV-B Radiation: From Environmental Stressor to Regulator of Plant Growth, First Edition. John Wiley & Sons Ltd. 2017.
  • 15. Sefa K, Benzer F, Yildirim S, Gur C, Kandemir FM et al. Protective effects of chrysin against oxidative stress and inflammation induced by lead acetate in rat kidneys: a biochemical and histopathological approach. Biological Trace Element Research 2020; 1-14. doi: 10.1007/ s12011-020-02268-8
  • 16. Kandemir FM, Caglayan C, Aksu EH, Yildirim S, Kucukler S et al. Protective effect of rutin on mercuric chloride-induced reproductive damage in male rats. Andrologia 2020; 52 (3): e13524. doi: 10.1111/and.13524
  • 17. Ferreres F, Figueiredo R, Bettencourt S, Carqueijeiro I, Oliveira J et al. Identification of phenolic compounds in isolated vacuoles of the medicinal plant Catharanthus roseus and their interaction with vacuolar class III peroxidase: an $H_2O_2$ affair? Journal of Experimental Botany 2011; 62: 2841-2854. doi: 10.1093/jxb/erq458
  • 18. Veljović Jovanović S, Kukavica B, Vidović M, Morina F, Menckhoff LJ. Class III peroxidases: functions, localization and redox regulation of isoenzymes. in: antioxidants and antioxidant enzymes in higher plants. Springer International Publishing AG. 2018; 269-300.
  • 19. Hodzic E, Balaban M, Suskalo N, Galijasevic S, Hasanagic D et al. Antioxidative response of Melissa officinalis L. and Valeriana officinalis L. leaves exposed to exogenous melatonin and excessive zinc and cadmium levels. Journal of Serbian Chemical Society 2019; 84: 11-25. doi: 10.2298/JSC180504070H
  • 20. Lawless J. Die Illustrierte Enzyklopadie der Aroma Öle. Bern: Scherz Verlag, 1988.
  • 21. Arnao MB, Hernandez-Ruiz J. Assessment of different sample processing procedures applied to the determination of melatonin in plants. Phytochemical Analysis 2009; 20: 14-18. doi: 10.1002/pca.1083
  • 22. Singleton VL, Orthofer R, Lamuela-Raventos RM. Analysis of total phenols and other oxidation substrates and antioxidants by means of folin-ciocalteu reagent. Methods in Enzymology 1999; 299: 152-178. doi: 10.1016/S0076-6879(99)99017-1
  • 23. Chang CC, Yang MH, Wen HM, Chern JC. Estimation of total flavonoid content in propolis by two complementary colorimetric methods. Journal of Food and Drug Analysis 2002; 10 (3): 178-182. doi: 10.38212/2224-6614.2748
  • 24. Soler-Rivas C, Espin JC, Wichers HJ. An easy and fast test to compare total free radical scavenger capacity of foodstuffs. Phytochemical Analysis 2000; 11: 330-338. doi: 10.1002/1099-1565(200009/10)11:5<330:AID-PCA534>3.0.CO;2-G
  • 25. Benzie IFF, Strain JJ. Ferric reducing/antioxidant power assay: direct measure of total antioxidant activity of biological fluids and modified version for simultaneous measurement of total antioxidant power and ascorbic acid concentration. Methods in Enzymology 1999; 299: 15-27. doi: 10.1016/S0076-6879(99)99005-5
  • 26. Apak R, Güçlü K, Demirata B, Özyürek M, Çelik SE et al. Comparative evaluation of various total antioxidant capacity assays applied to phenolic compounds with the CUPRAC Assay. Molecules 2007; 12: 1496-1547. doi: 10.3390/12071496
  • 27. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ. Protein measurement with the Folin phenol reagent. Journal of Biological Chemistry 1951; 193: 265-275.
  • 28. Teisseire H, Guy V. Copper-induced change in antioxidant enzymes activities in fronds of duckweed (Lemna minor). Plant Science 2000; 153: 65-72. doi: 10.1016/S0168-9452(99)00257-5
  • 29. Moradkhani H, Sargsyan E, Bibak H, Naseri B, Sadat-Hosseini M et al. Melissa officinalis L., a valuable medicine plant: a review. Journal of Medicinal Plant research 2010; 4: 2753-2759.
  • 30. Alloway BJ. Zinc in soils and crop nutrition. IZA Publications. International Zinc Association. Brussels, 2008; pp. 1-116.
  • 31. Tan DX, Manchester LC, Helton P, Reiter RJ. Phytoremediative capacity of plants enriched with melatonin. Plant Signaling and Behavior 2007; 2: 514-516. doi: 10.1096/fj.06-7745com
  • 32. Arnao MB, Hernandez-Ruiz J. Growth conditions determine different melatonin levels in Lupinus albus L. Journal of Pineal Research 2013; 55: 149-155. doi: 10.1111/jpi.12055
  • 33. Tang Y, Lin L, Xie Y, Liu J, Sun G et al. Melatonin affects the growth and cadmium accumulation of Malachium aquaticum and Galinsoga parviflora. International Journal of Phytoremediation 2018; 20 (4): 295-300. doi: 10.1080/15226514.2017.1374341
  • 34. Dorman D, Kosar M, Kahlos K, Holm I, Hiltunen R. Antioxidant properties and composition of aqueous extracts from mentha species, hybrids, varieties, and cultivars. Journal of Agricultural and Food Chemistry 2003; 51: 4563-4569. doi: 10.1021/jf034108k.
  • 35. Xu L, Yue Q, Bian F, Zhai H, Yao Y. Melatonin treatment enhances the polyphenol content and antioxidant capacity of red wine. Horticultural Plant Journal 2018; 2468-0141. doi: 10.1016/j.hpj.2018.05.004
  • 36. Sarrou E, Chatzopoulou P, Dimassi-Theriou K, Therios I, Koularmani A. Effect of melatonin, salicylic acid and gibberallic acid on leaf essential oil and other sec0ndary metabolites of bitter orange young seedlings. Journal of Essential Oil Research 2015; 27 (6): 487-496. doi: 10.1080/10412905.2015.1064485
  • 37. Li H, Chang J, Chen H, Wang Z, Gu X et al. Exogenous melatonin confers salt stress tolerance to watermelon by improving photosynthesis and redox homeostasis. Frontiers in Plant Science 2017; 8: 295. doi: 10.3389/fpls.2017.00295
  • 38. Balabusta M, Szafranska K, Posmyk MM. Exogenous melatonin improves antioxidant defense in cucumber seeds (Cucumis sativus L.) germinated under chilling stress. Frontiers in Plant Science 2016; 7: 575. doi: 10.3389/fpls.2016.00575
  • 39. Hasan K, Ahammed GJ, Yin L, Shi K, Xia X et al. Melatonin mitigates cadmium phytotoxicity through modulation of phytochelatins biosynthesis, vacuolar sequestration, and antioxidant potential in Solanum lycopersicum L. Frontiers in Plant Science 2015; 6: 601. doi: 10.3389/fpls.2015.00601
  • 40. Schutzendubel A, Nikolova P, Rudolf C, Polle A. Cadmium and $H_2O_2$ -induced oxidative stress in Populus x canescens roots. Plant Physiology and Biochemistry 2002; 40: 577-584. doi: 10.1016/S0981-9428(02)01411-0
  • 41. Pothinuch P, Tongchitpakdee S. Melatonin contents in mulburry (Morus spp) leaves: effects of sample preparation, cultivar, leaf age and tea processing. Food Chemistry 2011; 128: 415-419. doi: 10.1016/j.foodchem.2011.03.045
  • 42. Turk H, Erdal S, Genisel M, Atici O, Demir Y et al. The regulatory effect of melatonin on physiological, biochemical and molecular parameters in cold-stressed wheat seedlings. Plant growth Regulation 2014; 74: 139-152. doi: 10.1007/s10725-014-9905-0
  • 43. Wang P, Yin L, Liang D, Li C, Ma F et al. Delayed senescence of apple leaves by exogenous melatonin treatment: toward regulating the ascorbate-glutathione cycle. Journal of Pineal Research 2012; 53: 11-20. doi: 10.1111/j.1600-079X.2011.00966.x
  • 44. Zhao D, Yu Y, Shen Y, Liu Q, Zhao Z et al. Melatonin synthesis and function: evolutionary history in animals and plants. Frontiers in Endocrinology 2019; 10: 249. doi: 10.3389/fendo.2019.00249.
  • 45. Hacışevki A, Baba B. An overview of melatonin as an antioxidant molecule: a biochemical approach. Melatonin - Molecular Biology, Clinical and Pharmaceutical Approaches 2018. doi: 10.5772/intechopen.79421
  • 46. Rodriguez-Naranjo MI, Luisa Moyá M, Cantos-Villar E, Carmen Garcia-Parrilla M. Comparative evaluation of the antioxidant activity of melatonin and related indoles. Journal of Food Composition and Analysis 2012; 28: 16-22. doi: 10.1016/j.jfca.2012.07.001
  • 47. Tan D-X, Manchester LC, Esteban-Zubero E, Zhou Z, Reiter RJ. Melatonin as a potent and inducible endogenous antioxidant: synthesis and metabolism. Molecules 2015; 20: 18886-18906. doi: 10.3390/molecules201018886
  • 48. Ma Q, Zhang T, Zhang P, Wang Z-Y. Melatonin attenuates postharvest physiological deterioration of cassava storage roots. Journal of Pineal Research 2016; 60: 424-434. doi: 10.1111/jpi.12325. Epub 2016 Apr 2
  • 49. Xia H, Ni Z, Pan D. Effects of exogenous melatonin on antioxidant capacity in Actinidia seedlings under salt stress. Earth and Environmental Science 2017; 94. doi: 10.1088/1755-1315/94/1/012024
  • 50. Fan J, Xie Y, Zhang Z, Chen L. Melatonin: a multifunctional factor in plants. International Journal of Molecular Sciences 2018; 19 (5): 1528. doi: 10.3390/ijms19051528
Turkish Journal of Chemistry-Cover
  • ISSN: 1300-0527
  • Yayın Aralığı: Yılda 6 Sayı
  • Yayıncı: TÜBİTAK
Sayıdaki Diğer Makaleler

Electrochemical evaluation of the desloratadine at bismuth film electrode in the presence of cationic surfactant: Highly sensitive determination in pharmaceuticals and human urine by Linear sweep-cathodic stripping voltammetry

Günay ÖNAL, Abdulkadir LEVENT, Yalçın ALTUNKAYNAK

Evaluation of the surface properties of 4-(Decyloxy) benzoic acid liquid crystal and its use in structural isomer separation

Özlem CANKURTARAN, Fatih ÇAKAR, Birol IŞIK, Hüsnü CANKURTARAN

Synthesis and characterization of biodegradable palm palmitic acid based bioplastic

Jumat SALIMON, Abd Al-Wali JAPIR, Nadia SALIH

Synthesis and antioxidant activities of new nickel(II) complexes derived from 4-benzyloxysalicylidene-S-methyl/propyl thiosemicarbazones

Songül EĞLENCE BAKIR

Removal of COD, aromaticity and color of a pretreated chemical producing industrial wastewater: a comparison between adsorption, ozonation, and advanced oxidation processes

Deniz İzlen ÇİFÇİ, Elçin GÜNEŞ, Yalçın GÜNEŞ, Ali Rıza DİNÇER

The protective role of melatonin under heavy metal-induced stress in Melissa Officinalis L.

Elvisa HODŽIĆ, Milica BALABAN, Biljana KUKAVICA, Dijana MIHAJLOVIĆ, Sebila REKANOVIĆ, Halid MAKIĆ, Semira GALIJAŠEVIĆ

Novel Mannich bases with strong carbonic anhydrases and acetylcholinesterase inhibition effects: 3-(aminomethyl)-6-{3-[4-(trifluoromethyl)phenyl]acryloyl}-2(3H)- benzoxazolones

Yeliz DEMİR, İlhami GÜLÇİN, Barış ANIL, Mehmet KOCA, Sinan BiLGiNER

Evaluation of the fuel cell performances of $TiO_2$ /PAN electrospun carbon-based electrodes

Sema ASLAN

Synthesis, spectroscopic, thermal, crystal structure properties, and characterization ofnew Hofmann-$T_d$-type complexes with 3-aminopyridine

Zeki KARTAL, Onur ŞAHİN

The synthesis and characterization of polyorganosiloxane nanoparticles from 3-mercaptopropyltrimethoxysilane for preparation of nanocomposite films via photoinitiated thiol-ene polymerization

Nurcan KARACA