The promoted synthesis of minoxidil by magnetic nanoparticles of cobalt ferrite (CoFe2O4 ) as a heterogeneous reusable catalyst

The promoted synthesis of minoxidil by magnetic nanoparticles of cobalt ferrite (CoFe2O4 ) as a heterogeneous reusable catalyst

Minoxidil (2,4-diamino-6-piperidinopyrimidine 3-oxide) was primarily recognized as a drug for reducingvascular resistance to blood flow. It was later introduced as a more important medicine for topical stimulation of hair growth and baldness reverting as well as treatment of androgenic alopecia through increasing prostaglandin endoperoxide synthesis. In this study, magnetic nanoparticles (MNPs) of spinel ferrites (MFe 2 O4 , M = Co, Ni, Fe, Cu, and Zn) via solid-state grinding procedure were prepared and then characterized using X-ray diffraction, scanning electron microscopy, transmission electron microscopy, vibrating sample magnetometer, and Fourier transform infrared techniques. The prepared nanoferrites were utilized as efficient and green heterogeneous catalysts for N -oxidation of 2,6-diamino-4- chloro-pyrimidine with H2 O2 in refluxing ethanol giving 2,6-diamino-4-chloro-pyrimidine N -oxide as a starting material for the synthesis of 2,4-diamino-6-piperidinopyrimidine 3-oxide (minoxidil). Among the examined nanoferrites, CoFe 2 O4 MNPs exhibited prominent catalytic activity giving the product in 95% yield within 60 min. Moreover, the reusability ofnano-CoFe 2 O4 was examined for 6 consecutive cycles without significant loss of catalytic activity and magnetic property

___

  • 1. Meisheri KD, Cipkus LA, Taylor CJ. Mechanism of action of minoxidil sulfate-induced vasodilation: a role for increased K + permeability. Journal of Pharmacology and Experimental Therapeutics 1988; 245 (3): 751-760.
  • 2. Winquist RJ, Heaney LA, Wallace AA, Baskin EP, Stein RB et al. Glyburide blocks the relaxation response to BRL 34915 (cromakalim), minoxidil sulfate and diazoxide in vascular smooth muscle. Journal of Pharmacology and Experimental Therapeutics 1989; 248 (1): 149-156.
  • 3. Proctor PH. Endothelium-derived relaxing factor and minoxidil: active mechanisms in hair growth. Archives of Dermatology 1989; 125 (8): 1146. doi: 10.1001/archderm.1989.01670200122026
  • 4. Ellis JA, Sinclair RD. Male pattern baldness: current treatments, future prospects. Drug Discovery Today 2008; 13 (17-18): 791-797. doi: 10.1016/j.drudis.2008.05.010
  • 5. Gorecki DKJ. Minoxidil. Analytical Profiles of Drug Substances 1988; 17: 185-219. doi: 10.1016/S0099-5428(08)60220-8
  • 6. Zhang Z, Liu Y, Yao G, Guoyin Z, Hao Y. Synthesis and characterization of NiFe 2 O4 nanoparticles via solidstate reaction. International Journal of Applied Ceramic Technology 2013; 10 (1): 142-149. doi: 10.1111/j.1744- 7402.2011.02719.x
  • 7. Lu AH, Salabas EL, Schuth F. Magnetic nanoparticles: synthesis, protection, functionalization, and application. Angewandte Chemie International Edition 2007; 46 (8): 1222-1244. doi: 10.1002/anie.200602866
  • 8. Zhu Y, Stubbs LP, Ho F, Liu R, Ship CP et al. Magnetic nanocomposites: a new perspective in catalysis. ChemCatChem 2010; 2 (4): 365-347. doi:10.1002/cctc.200900314
  • 9. Lim CW, Lee IS. Magnetically recyclable nanocatalyst systems for the organic reactions. Nanotoday 2010; 5 (5): 412-434. doi: 10.1016/j.nantod.2010.08.008
  • 10. Gawande M, Rathi A, Branco P, Varma RS. Sustainable utility of magnetically recyclable nanocatalysts in water: applications in organic synthesis . Applied Sciences 2013; 3 (4): 656-674. doi: 10.3390/app3040656
  • 11. Gupta AK, Gupta M. Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications. Biomaterials 2005; 26 (18): 3995-4021. doi: 10.1016/j.biomaterials.2004.10.012
  • 12. Chen D, Zeng D, Liu Z. Synthesis, structure, morphology evolution and magnetic properties of single domain strontium hexaferrite particles. Materials Research Express 2016; 3 (4): 045002. doi: 10.1088/2053-1591/3/4/045002
  • 13. Mornet S, Vasseur S, Grasset F, Veverka P, Goglio G et al. Magnetic nanoparticle design for medical applications. Progress in Solid State Chemistry 2006; 34 (2-4): 237-247. doi: 10.1016/j.progsolidstchem.2005.11.010
  • 14. Chen D, Meng Y, Gandha KH, Zeng D, Yu H et al. Morphology control of hexagonal strontium ferrite micro/nanocrystals. American Institute of Physics Advances 2017; 7 (5): 056214. doi: 10.1063/1.4974283
  • 15. Hyeon T, Lee SS, Park J, Chung Y, Na HB. Synthesis of highly crystalline and mono disperse maghemite nanocrystallites without a size-selection process. Journal of the American Chemical Society 2001; 123 (51): 12798- 12801. doi: 10.1021/ja016812s
  • 16. Pullar RC. Hexagonal ferrites: A review of the synthesis, properties and applications of hexaferrite ceramics. Progress in Materials Science 2012; 57 (7): 1191-1334. doi: 10.1016/j.pmatsci.2012.04.001
  • 17. Kashid P, Mahadev S, Kulkarni AB, Mathad SN, Shedam R. Synthesis and structural studies of nano Co 0.85 Cd 0.15 Fe 2 O4 ferrite by co-precipitation method. Journal of Advanced Physics 2017; 6 (4): 545-548. doi: 10.1166/jap.2017.1373
  • 18. Zhang D, Zhang X, Ni X, Song J, Zheng H. Low-temperature fabrication of MnFe 2 O4 octahedrons: magnetic and electrochemical properties. Chemical Physics Letters 2006; 426 (1-3): 120-123. doi: 10.1016/j.cplett.2006.05.100
  • 19. Hassanzadeh S, Eisavi R, Abbasian M. Preparation and characterization of magnetically separable MgFe 2 O4 /Mg(OH) 2 nanocomposite as an efficient heterogeneous catalyst for regioselective one-pot synthesis of β - chloroacetates from epoxides. Applied Organometallic Chemistry 2018; 32 (11): e4520. doi: 10.1002/aoc.4520
  • 20. Eisavi R, Ghadernejad S, Zeynizadeh B, Mohammad Aminzadeh F. Magnetically separable nano CuFe 2 O4 : an ef?cient and reusable heterogeneous catalyst for the green synthesis of thiiranes from epoxides with thiourea. Journal of Sulfur Chemistry 2016; 37 (5): 537-545. doi: 10.1080/17415993.2016.1196691
  • 21. Eisavi R, Ahmadi F, Ebadzade B, Ghadernejad S. A green method for solvent-free conversion of epoxides to thiiranes using NH4 SCN in the presence of NiFe 2 O4 and MgFe 2 O4 magnetic nanocatalysts. Journal of Sulfur Chemistry 2017; 38 (6): 614-624. doi: 10.1080/17415993.2017.1334780
  • 22. Eisavi R , Alifam S. ZnFe 2 O4 nanoparticles: A green and recyclable magnetic catalyst for fast and regioselective conversion of epoxides to vicinal hydroxythiocyanates using NH4 SCN under solvent-free conditions. Phosphorus, Sulfur, and Silicon and the Related Elements 2018; 193 (4): 211-217. doi: 10.1080/10426507.2017.1390460
  • 23. Lida H, Takayannagi K, Nakamishi T, Osaka T. Synthesis of Fe 3 O4 nanoparticles with various sizes and magnetic properties by controlled hydrolysis. Journal of Colloid and Interface Science 2007; 314 (1): 274-280. doi: 10.1016/j.jcis.2007.05.047
  • 24. Sanchez RD, Rivas J, Vaqueiro P, Lopez-Quintela MA, Caeiro D. Particle size effects on magnetic properties of yttrium iron garnets prepared by a sol–gel method. Journal of Magnetism and Magnetic Materials 2002; 247 (1): 92-98. doi: 10.1016/S0304-8853(02)00170-1
  • 25. Mazario E, Herrasti P, Morales MP, Menendez N. Synthesis and characterization of CoFe 2 O4 ferrite nanoparticles obtained by an electrochemical method. Nanotechnology 2012; 23 (35): 355708. doi: 10.1088/0957-4484/23/35/355708
  • 26. Sathiya S, Parasuraman K, Anbarasu M, Balamurugan K. FT-IR, XRD, and SEM study of CoFe 2 O4 nanoparticles by chemical co-precipitation method. Nano Vision 2015; 5 (4-6): 133-138.
  • 27. Sharma VB, Jain SL, Sain B. Bromamine-T/RuCl 3 as an efficient system for the oxidation of tertiary amines to N -oxides. Tetrahedron Letters 2004; 45 (22): 4281-4283. doi: 10.1016/j.tetlet.2004.04.014
  • 28. Ionescu R, Pavel OD, Bırjega R, Zavoianu R, Angelescu E. Epoxidation of cyclohexene with H2 O2 and acetonitrile catalyzed by Mg–Al hydrotalcite and cobalt modified hydrotalcites. Catalysis Letters 2010; 134 (3-4): 309-317. doi: 10.1007/s10562-009-0238-y
  • 29. Zhu Z, Espenson JH. Methylrhenium trioxide as a catalyst for oxidations with molecular oxygen and for oxygen transfer. Journal of Molecular Catalysıs A: Chemıcal 1995; 103 (2): 87-94. doi: 10.1016/1381-1169(95)00120-4.
  • 30. Li Z, Gao J, Xing X, Wu S, Shuang S et al. Synthesis and characterization of n-alkylamine-stabilized palladium nanoparticles for electrochemical oxidation of methane. Journal of Physical Chemistry C 2010; 114 (2): 723-733. doi: 10.1021/jp907745v
  • 31. Yamamoto M, Kashiwagi Y, Nakamoto M. Size-controlled synthesis of monodispersed silver nanoparticles capped by long-chain alkyl carboxylates from silver carboxylate and tertiary amine. Langmuir 2006; 22 (20): 8581-8586. doi: 10.1021/la0600245
  • 32. Leger B, Denicourt-Nowicki A, Olivier-Bourbigou H, Roucoux A. Rhodium nanocatalysts stabilized by various bipyridine ligands in nonaqueous ionic liquids: effect of the bipyridine coordination modes in arene catalytic hydrogenation. Inorganic Chemistry 2008; 47 (19): 9090-9096. doi: 10.1021/ic8010713