Synthesis, optical, and structural properties of bisphenol-bridged aromatic cyclic phosphazenes∗

Phenoxy- and naphthoxy-substituted bisphenol-bridged cyclic phosphazenes were synthesized in 2 steps and their thermal, photophysical, and electrochemical properties were investigated. The structures of the cyclic phosphazene compounds were determined by ESI-MS mass spectrometry and 1H, 13C, and 31P NMR spectroscopies. The photophysical studies of phenoxy- and naphthoxy-substituted bridged cyclophosphazenes were investigated by means of absorption and fluorescence spectroscopies in different solvents. Thermal and electrochemical properties of the target compounds were also studied. Furthermore, the excimer emissions through intramolecular interactions in solution and in solid state were investigated by fluorescence spectroscopy and the theoretical calculations were performed in detail using DFT.

___

  • 1. Astruc D, Boisselier E, Ornelas C. Dendrimers designed for functions: from physical, photophysical, and supramolecular properties to applications in sensing, catalysis, molecular electronics, photonics, and nanomedicine. Chemical Reviews 2009; 110: 1857-1959. doi: 10.1021/cr900327d
  • 2. Singler RE, Willingham RA, Noel C, Friedrich C, Bosio L et al. Thermotropic liquid crystalline poly (organophosphazene). Macromolecules 1991; 24: 510-516. doi: 10.1021/ma00002a026
  • 3. Wu D, Sedgwick AC, Gunnlaugsson T, Akkaya EU, Yoon J et al. Fluorescent chemosensors: the past, present and future. Chemical Society Reviews 2017; 6: 7105-7123. doi: 10.1039/C7CS00240H
  • 4. Giordano F, Roma G, Liberatore M, Miruzzo V, Conte V. Smart materials and concepts for photovoltaics: dye sensitized solar cells. Smart Materials for Energy, Communications and Security 2008; 97-126. doi: 10.1007/978-1- 4020-8796-7_8
  • 5. Çoşut B, Yeşilot S. Synthesis, thermal and photophysical properties of naphthoxycyclotriphosphazenyl-substituted dendrimeric cyclic phosphazenes. Polyhedron 2012; 35: 101-107. doi: 10.1016/j.poly.2012.01.013
  • 6. Zhang W, Zhao X, Gu W, Cheng T, Wang B et al. A novel naphthalene-based fluorescent probe for highly selective detection of cysteine with a large Stokes shift and its application in bioimaging. New Journal of Chemistry 2018; 42: 18109-18116. doi: 10.1039/C8NJ04425B
  • 7. Badekar PS, Kumbhar AA. Anthracene-based fluorescence turn-on chemodosimeter for the recognition of persulfate anion. New Journal of Chemistry 2018; 42: 3917-3923. doi: 10.1039/C7NJ03425C
  • 8. Wei AP, Blumenthal DK, Herron JN. Antibody-mediated fluorescence enhancement based on shifting the intramolecular dimer monomer equilibrium of fluorescent dyes. Analytical Chemistry 1994; 66: 1500-1506. doi: 10.1021/ac00081a023
  • 9. Dunsing V, Luckner M, Zühlke B, Petazzi RA, Herrmann A et al. Optimal fluorescent protein tags for quantifying protein oligomerization in living cells. Scientific Reports 2018; 2018: 1-12. doi: 10.1038/s41598-018-28858-0
  • 10. Smith RC, Tennyson AG, Lim MH, Lippard SJ. Conjugated polymer-based fluorescence turn-on sensor for nitric oxide. Organic Letters 2005; 7: 3573-3575. doi: 10.1021/ol0513903
  • 11. Tuncel D. π -Conjugated nanostructured materials: preparation, properties and photonic applications. Nanoscale Advances 2019; 1: 19-33. doi: 10.1039/C8NA00108A
  • 12. Allen CW. Regio- and stereochemical control in substitution reactions of cyclophosphazenes. Chemical Reviews 1991; 91: 119-135. doi: 10.1021/cr00002a002
  • 13. Özcan E, Tümay SO, Keşan G, Yeşilot S, Çoşut B. The novel anthracene decorated dendrimeric cyclophosphazenes for highly selective sensing of 2,4,6-trinitrotoluene (TNT). Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 2019; 220: 117115. doi: 10.1016/j.saa.2019.05.020
  • 14. Keshav K, Singh N, Elias JA. Synthesis and reactions of ethynylferrocene-derived fluoro- and chlorocyclotriphosphazenes. Inorganic Chemistry 2010; 49: 5753-5765. doi: 10.1021/ic100703h
  • 15. Kumar D, Singh N, Keshav K, Elias JA. Ring-closing metathesis reactions of terminal alkene-derived cyclic phosphazenes. Inorganic Chemistry 2011; 50: 250-260. doi: 10.1021/ic101884s
  • 16. Kumar NS, Swamy Kumara KC. Synthesis and structures of unsymmetrical bis- and tris-cyclotriphosphazenes. Polyhedron 2004; 23: 979-985. doi: 10.1016/j.poly.2003.12.024
  • 17. Kumarasswamy S, Vijjulatha M, Muthiah C, Swamy Kumara KC, Engelhardt U. Synthesis, reactivity and structures of spirocyclic products derived from octachlorocyclotetraphosphazene: comparison with spirocyclic cyclotriphosphazenes and linear phosphazenes. Dalton Transactions 1999; 891-899. doi: 10.1039/A807373B
  • 18. Ozay H, Ozay O. Synthesis and characterization of drug microspheres containing phosphazene for biomedical applications. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2014; 450: 99-105. doi: 10.1016/j.colsurfa.2014.03.022
  • 19. Sun J, Yu Z, Wang X, Wu D. Synthesis and performance of cyclomatrix polyphosphazene derived from trispirocyclotriphosphazene as a halogen-free nonflammable material. Sustainable Chemistry Engineering 2014; 2: 231-238. doi: 10.1021/sc400283d
  • 20. He Q, Dai H, Tan X, Cheng X, Liu F et al. Synthesis and characterization of room temperature columnar mesogens of cyclotriphosphazene with Schiff base units. Journal of Material Chemistry C 2013; 1: 7148-7154. doi: 10.1039/C3TC31371A
  • 21. Tümer Y, Asmafiliz N, Kılıç Z, Aydın B, Açık L et al. Phosphorus-nitrogen compounds: Part 43. Syntheses, spectroscopic characterizations and antimicrobial activities of cis- and trans-N/O dispirocyclotriphosphazenes containing ferrocenyl pendant arms. Journal of Molecular Structure 2018; 1173: 885-893. doi: 10.1016/j.molstruc.2018.07.050
  • 22. Keller MA, Saba CS. Oxidative stability and degradation mechanism of a cyclotriphosphazene lubricant. Analytical Chemistry 1996; 68 (19): 3489-3492. doi: 10.1021/ac960632x
  • 23. Zuo C, Yang M, Wang Z, Jiang K, Li S et al. Cyclophosphazene-based hybrid polymer electrolytes obtained via epoxyamine reaction for high-performance all-solid-state lithium-ion batteries. Journal of Material Chemistry A 2019; 7: 18871-18879. doi: 10.1039/C9TA05028K
  • 24. Lawson GT, Rivals F, Tascher M, Jacob C, Bickley JF et al. cis-Trihydrogen cyclotriphosphazenates—acidic anions in strongly basic media. Chemical Communications 2000; 341-342. doi: 10.1039/A908954C
  • 25. Çetindere S, Tümay SO, Şenocak A, Kılıç A, Durmuş M et al. Novel pyrene-BODIPY dyes based on cyclotriphosphazene scaffolds: synthesis, photophysical and spectroelectrochemical properties. Inorganica Chimica Acta 2019; 494: 132-140. doi: 10.1016/j.ica.2019.05.022
  • 26. AlidağıArdıç H, Tümay SO, Şenocak A, Yeşilot S. Pyrene functionalized cyclotriphosphazene-based dyes: synthesis, intramolecular excimer formation, and fluorescence receptor for the detection of nitro-aromatic compounds. Dyes and Pigments 2018; 153: 172-181. doi: 10.1016/j.dyepig.2018.02.012
  • 27. Tümay SO, Uslu A, AlidağıArdıç H, Kazan HH, Bayraktar C et al. A systematic series of fluorescence chemosensors with multiple binding sites for Hg(ii) based on pyrenyl-functionalized cyclotriphosphazenes and their application in live cell imaging. New Journal of Chemistry 2018; 42: 14219-14228. doi: 10.1039/C8NJ02482K
  • 28. Xu J, Toh CL, Ke KL, Li JJ, Cho CM et al. Thermally stable blue-light-emitting hybrid organic−inorganic polymers derived from cyclotriphosphazene. Macromolecules 2008; 41: 9624-9636. doi: 10.1021/ma801563s
  • 29. AlidağıArdıç H, Hacıvelioglu F, Tümay SO, Çosut B, Yeşilot S. Synthesis and spectral properties of fluorene substituted cyclic and polymeric phosphazenes. Inorganica Chimica Acta 2017; 457: 95-102. doi: 10.1016/j.ica.2016.12.013
  • 30. Çetindere S, Tümay SO, Kılıç A, Durmus M, Yesilot S. Synthesis and physico-chemical properties of cyclotriphosphazene-BODIPY conjugates. Dyes and Pigments 2017; 139: 517-523. doi: 10.1016/j.dyepig.2016.12.035
  • 31. Kumar Bhuvan NN, Swamy Kumara KC. Single diastereomers of unsymmetrical tris-spirocyclic cyclotriphosphazenes based on 1,1′-bi-2-naphthol—Synthesis and structures. Chirality 2008; 20: 781-789. doi: 10.1002/chir.20528
  • 32. Tümay SO, Yeşilot S. Tripodal synthetic receptors based on cyclotriphosphazene scaffold for highly selective and sensitive spectrofluorimetric determination of iron(III) in water samples. Journal of Photochemistry & Photobiology A: Chemistry 2019; 372: 156-167. doi: 10.1016/j.jphotochem.2018.12.012
  • 33. Seçkin T, Sezer S, Köytepe S. Synthesis of phenanthroline-functionalized phosphazene based metallosupramolecular polymers and their stimuli-responsive properties. Journal of Inorganic Organometallic Polymers and Materials 2018; 28 (6): 2825-2834. doi: 10.1007/s10904-018-0938-0
  • 34. Fery-Forgues S, Lavabre D. Are fluorescence quantum yields so tricky to measure? A demonstration using familiar stationery products. Journal of Chemical Education 1999; 76 (9): 1260-1264. doi: 10.1021/ed076p1260
  • 35. Melhuish WH. Quantum efficiencies of fluorescence of organic substances: effect of solvent and concentration of the fluorescent solute. Journal of Physical Chemistry 1961; 65: 229-235. doi: 10.1021/j100820a009
  • 36. Durmuş M, Hacıvelioğlu F, Kılıç A, Yeşilot S. The synthesis, thermal and photophysical properties of phenoxycyclotriphosphazenyl- substituted cyclic and polymeric phosphazenes. Polyhedron 2009; 28: 2510-2516. doi: 10.1016/j.poly.2009.05.027
  • 37. Çoşut B, Yeşilot S, Durmuş M, Kılıç A, Ahsen V. Synthesis and properties of axially-phenoxycyclotriphosphazenyl substituted silicon phthalocyanine. Polyhedron 2010; 29: 675-682. doi: 10.1016/j.poly.2009.09.035
  • 38. Okutan E, Çosut B, Kayıran BS, Durmuş M, Kılıç A. Synthesis of a dendrimeric phenoxy-substituted cyclotetraphosphazene and its non-covalent interactions with multiwalled carbon nanotubes. Polyhedron 2014; 67: 344-350. doi: 10.1016/j.poly.2013.09.011
  • 39. Şenkuytu E, Yenilmez Çiftçi G. Structural and chemosensor properties of FDA and FDP derivatives of fluorenylidene bridged cyclotetraphosphazenes. Polyhedron 2016; 115: 247-256. doi: 10.1016/j.poly.2016.04.046
  • 40. Ren H, Jia S, Wu Y, Wu S, Zhang T et al. Improved photochemical reactivities of Ag 2 O/g-C3 N4 in phenol degradation under UV and visible light. Industrial Engineering Chemical Research 2014; 53: 17645-17653. doi: 10.1021/ie503312x
  • 41. Tchaikovskaya ON, Sokolova IV, Kuznetsova RT, Swetlitchnyi VA, Kopylova TN et al. Fluorescence investigations of phenol phototransformation in aqueous solutions. Journal of Fluorescence 2000; 10: 403-408. doi: 10.1023/A:1009486615346
  • 42. Xiao D, Premont-Schwarz M, Nibbering ETJ, Batista VS. Ultrafast vibrational frequency shifts induced by electronic excitations: naphthols in low dielectric media. Journal of Physical Chemistry A 2012; 116: 2775-2790. doi: 10.1021/jp208426v
  • 43. Zhao X, Li Y, Wang J, Ouyang Z, Li J et al. Interactive oxidation-reduction reaction for the in situ synthesis of graphene-phenol formaldehyde composites with enhanced properties. Applied Materials Interface 2014; 6: 4254- 4263. doi: 10.1021/am405983a
  • 44. Parker D, Williams JA. Luminescence behaviour of cadmium, lead, zinc, copper, nickel and lanthanide complexes of octadentate macrocyclic ligands bearing naphthyl chromophores. Journal of Chemical Society, Perkin Transactions 2 1995; 7: 1305-1314. doi: 10.1039/P29950001305
  • 45. Kamkaew A, Burgess K. Aza-BODIPY dyes with enhanced hydrophilicity. Chemical Communications 2015; 51: 10664-10667. doi: 10.1039/C5CC03649F
  • 46. Yeşilot S, Çoşut B, AlidağıArdıç H, Hacıvelioğlu F, Özpınar AG et al. Intramolecular excimer formation in hexakis(pyrenyloxy)cyclotriphosphazene: photophysical properties, crystal structure, and theoretical investigation. Dalton Transactions 2014; 43: 3428-3433. doi: 10.1039/C3DT52957F
  • 47. Tümay SO, Sarıkaya YS, Yeşilot S. Novel iron(III) selective fluorescent probe based on synergistic effect of pyrenetriazole units on a cyclotriphosphazene scaffold and its utility in real samples. Journal of Luminescence 2018; 196: 126-135. doi: 10.1016/j.jlumin.2017.12.019
  • 48. Du Y, Chen M, Zhang Y, Luo F, He C et al. Determination of iron(III) based on the fluorescence quenching of rhodamine B derivative. Talanta 2013; 106: 261-265. doi: 10.1016/j.talanta.2012.10.078
  • 49. Gu B, Huang L, Mi N, Yin P, Zhang Y et al. An ESIPT-based fluorescent probe for highly selective and ratiometric detection of mercury(II) in solution and in cells. Analyst 2015; 140: 2778-2784. doi: 10.1039/C5AN00273G
  • 50. Şenocak A, Kaya EN, Kadem B, Basova T, Demirbaş E et al. Synthesis and organic solar cell performance of BODIPY and coumarin functionalized SWCNTs or graphene oxide nanomaterials. Dalton Transactions 2018; 47: 9617-9626. doi: 10.1039/C8DT01588K
  • 51. Şenocak A, Köksoy B, Demirbaş E, Durmuş M. Investigation of electrochemical properties and gas adsorption studies of novel sandwich core phthalocyanines. Journal of Physical Organic Chemistry 2018; 32: 1-12. doi: 10.1002/poc.3907
  • 52. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA et al. Gaussian 09, Revision B.01, 2009. Wallingford, CT, USA: Gaussian; 2009.
  • 53. Becke AD. Density functional thermochemistry. III. The role of exact exchange. Journal of Chemical Physics 1993; 98: 5648-5652. doi: 10.1063/1.464913