Ranolazine-functionalized CuO NPs: efficient homogeneous and heterogeneous catalysts for reduction of 4-nitrophenol

In the present study copper oxide nanoparticles (CuO NPs) were synthesized using a hydrothermal method with ranolazine as a shape-directing agent. Ranolazine-functionalized CuO NPs were characterized by various analytical techniques such as scanning electron microscopy (SEM), Fourier transform infrared (FTIR) spectroscopy and X-ray diffraction (XRD). The SEM pattern confirmed the morphology of ranolazine-functionalized CuO NPs with well-defined rice-like structures. FTIR spectroscopy confirmed the interaction between CuO NPs and ranolazine. The XRD analysis indicated that the structure of ranolazine-functionalized CuO NPs was monoclinic crystalline and the size ranged between 9 and 18 nm with an average particle size of 12 nm. The smaller size range of CuO NPs gave a large surface area that enhanced the efficiency of these catalysts employed for the reduction of 4-nitrophenol (4-NP) to 4-aminophenol (4-AP) in the H2 O system. In homogeneous catalysis, results showed that 50 μL of CuO NPs was required in the presence of NaBH4 for 99% reduction of 4-NP in 240 s. On the other hand, for heterogeneous catalysis, 0.5 mg of CuO NPs was used in the presence of NaBH4 for 99% catalytic reduction of 4-NP to 4-AP in 320 s. The rate of reaction for homogeneous catalysis and heterogeneous catalysis was determined from the plots of In(Ct /C0) of 4-NP versus time (s), which showed good linearity with values of 1.3 × 10−2 and 8.8 × 10−3 s−1 . respectively. The high-quality catalytic efficiency, good reusability, nontoxic nature, and low cost are favorable properties of the synthesized CuO NPs for use as efficient catalysts for reduction of 4-AP to 4-NP in both homogeneous and heterogeneous media.

___

  • 1. Zhang J, Chen G, Chaker M, Rosei F, Ma D. Gold nanoparticle decorated ceria nanotubes with significantly high catalytic activity for the reduction of nitrophenol and mechanism study. Applied Catalysis B: Environmental 2013; 132: 107-115. doi: 10.1016/j.apcatb.2012.11.030
  • 2. Zarejousheghani M, Möder M, Borsdorf H. A new strategy for synthesis of an in-tube molecularly imprinted polymer-solid phase microextraction device: selective off-line extraction of 4-nitrophenol as an example of priority pollutants from environmental water samples. Analytica Chimica Acta 2013; 798: 48-55. doi: 10.1016/j.aca.2013.08.038
  • 3. Chiou JR, Lai BH, Hsu KC, Chen DH. One-pot green synthesis of silver/iron oxide composite nanoparticles for 4-nitrophenol reduction. Journal of Hazardous Materials, 2013; 248: 394-400. doi: 10.1016/j.jhazmat.2013.01.030
  • 4. Sadeghzadeh SM, Zhiani R, Emrani S. The reduction of 4-nitrophenol and 2-nitroaniline by the incorporation of Ni@Pd MNPs into modified UiO-66-NH2 metal–organic frameworks (MOFs) with tetrathia-azacyclopentadecane. New Journal of Chemistry 2018; 42: 988-994. doi: 10.1039/C7NJ03732E
  • 5. Guo M, He J, Li Y, Ma S, Sun X. One-step synthesis of hollow porous gold nanoparticles with tunable particle size for the reduction of 4-nitrophenol. Journal of Hazardous Materials 2016; 310: 89-97. doi: 10.1016/j.jhazmat.2016.02.016
  • 6. Zhao P, Feng X, Huang D, Yang G, Astruc D. Basic concepts and recent advances in nitrophenol reduction by gold- and other transition metal nanoparticles. Coordination Chemistry Reviews 2015; 287: 114-136. doi: 10.1016/j.ccr.2015.01.002
  • 7. Castañeda C, Tzompantzi F, Gómez R. Photocatalytic reduction of 4-nitrophenol on in situ fluorinated sol–gel TiO2 under UV irradiation using Na 2 SO3 as reducing agent. Journal of Sol-Gel Science and Technology 2016; 80: 426-435. doi: 10.1007/s10971-016-4104
  • 8. Mondal A, Mondal A, Adhikary B, Mukherjee DK. Cobalt nanoparticles as reusable catalysts for reduction of 4- nitrophenol under mild conditions. Bulletin of Materials Science 2017; 40: 321-328. doi: 10.1007/s12034-017-1367-3
  • 9. Marais E, Nyokong T. Adsorption of 4-nitrophenol onto Amberlite IRA-900 modified with metallophthalocyanines. Journal of Hazardous Materials, 2008; 152: 293-301. doi: 10.1016/j.jhazmat.2007.06.096
  • 10. Bo L, Zhang Y, Quan X, Zhao B. Microwave assisted catalytic oxidation of p-nitrophenol in aqueous solution using carbon-supported copper catalyst. Journal of Hazardous Materials 2008; 153: 1201-1206. doi: 10.1016/j.jhazmat.2007.09.082
  • 11. Modirshahla N, Behnajady M, Mohammadi-Aghdam S. Investigation of the effect of different electrodes and their connections on the removal efficiency of 4-nitrophenol from aqueous solution by electrocoagulation. Journal of Hazardous Materials 2008; 154: 778-786. doi: 10.1016/j.jhazmat.2007.10.120
  • 12. Chang YC, Chen DH. Catalytic reduction of 4-nitrophenol by magnetically recoverable Au nanocatalyst. Journal of Hazardous Materials 2009; 165: 664-669. doi: 10.1016/j.jhazmat.2008.10.034
  • 13. Dong Z, Le X, Li X, Zhang W, Dong C et al. Silver nanoparticles immobilized on fibrous nano-silica as highly efficient and recyclable heterogeneous catalyst for reduction of 4-nitrophenol and 2-nitroaniline. Applied Catalysis B: Environmental 2014; 158: 129-135. doi: 10.1016/j.apcatb.2014.04.015
  • 14. Geng Q, Du J. Reduction of 4-nitrophenol catalyzed by silver nanoparticles supported on polymer micelles and vesicles. RSC Advances 2014; 4: 16425-16428. doi: 10.1039/C4RA01866D
  • 15. Yilmaz E, Soylak M. Facile and green solvothermal synthesis of palladium nanoparticle-nanodiamond-graphene oxide material with improved bifunctional catalytic properties. Journal of the Iranian Chemical Society 2017; 14 (12): 2503-2512. doi: 10.1007/s13738-017-1185-y
  • 16. Yilmaz E, Tut Y, Turkoglu O. Synthesis and characterization of Pd nanoparticle-modified magnetic Sm2O3–ZrO2 as effective multifunctional catalyst for reduction of 2-nitrophenol and degradation of organic dyes. Journal of the Iranian Chemical Society 2018; 15 (8): 1721-1731. doi: 10.1007/s13738-018-1369-0
  • 17. Ahamed M, Akhtar MJ, Alhadlaq HA, Alrokayan SA. Assessment of the lung toxicity of copper oxide nanoparticles: current status. Nanomedicine 2015; 10: 2365-2377. doi: 10.2217/nnm.15.72
  • 18. Fahmy B, Cormier SA. Copper oxide nanoparticles induce oxidative stress and cytotoxicity in airway epithelial cells. Toxicology In Vitro 2009; 23: 1365-1371. doi: 10.1016/j.tiv.2009.08.005
  • 19. Nadaroglu H, Ince S, Gungor AA. Green synthesis of gold nanoparticles using quail egg yolk and investigation of potential application areas. Green Processing and Synthesis 2017; 6 (1): 43-48. doi: 10.1515/gps-2016-0091
  • 20. Parveen K, Banse V, Ledwani L. Green synthesis of nanoparticles: their advantages and disadvantages. AIP Conference Proceedings 2016; 1724 (1): 020048. doi: 10.1063/1.4945168
  • 21. El-Trass A, ElShamy H, El-Mehasseb I, El-Kemary M. CuO nanoparticles: synthesis, characterization, optical properties and interaction with amino acids. Applied Surface Science 2012; 258: 2997-3001. doi: 10.1016/j.apsusc.2011.11.025
  • 22. Gültekin DD, Güngör AA, Önem H. Synthesis of copper nanoparticles using a different method: determination of its antioxidant and antimicrobial activity. Journal of the Turkish Chemical Society, Section A: Chemistry 2016; 3 (3): 623-636. doi: 10.18596/jotcsa.287299
  • 23. Phiwdang K, Suphankij S, Mekprasart W. Synthesis of CuO nanoparticles by precipitation method using different precursors. Energy Procedia 2013; 34: 740-745. doi: 10.1016/j.egypro.2013.06.808
  • 24. Azam A, Ahmed AS, Oves M, Khan MS, Habib SS et al. Antimicrobial activity of metal oxide nanoparticles against Gram-positive and Gram-negative bacteria: a comparative study. International Journal of Nanomedicine 2012; 7: 6003-6009. doi: 10.2147/IJN.S35347
  • 25. Ethiraj AS, Kang DJ. Synthesis and characterization of CuO nanowires by a simple wet chemical method. Nanoscale Research Letters 2012; 7: 70. doi: 10.1186/1556-276X-7-70
  • 26. Laghari GN, Nafady A, Al-Saeedi SI, Sherazi STH, Nisar J et al. Ranolazine-functionalized copper nanoparticles as a colorimetric sensor for trace level detection of As 3+ . Nanomaterials, 2019; 9: 83. doi: 10.3390/nano9010083
  • 27. Abdulla-Al-Mamun M, Kusumoto Y. Muruganandham M. Simple new synthesis of copper nanoparticles in water/acetonitrile mixed solvent and their characterization. Materials Letters 2009; 63: 2007-2009. doi: 10.1016/j.matlet.2009.06.037
  • 28. Li M, Chen G. Revisiting catalytic model reaction p-nitrophenol/NaBH4 using metallic nanoparticles coated on polymeric spheres. Nanoscale 2013; 5: 11919-11927. doi: 10.1039/C3NR03521B
  • 29. Pal J, Sasmal AK, Ganguly M, Pal T. Surface plasmon effect of Cu and presence of n–p heterojunction in oxide nanocomposites for visible light photocatalysis. Journal of Physical Chemistry C 2015; 119: 3780-3790. doi: 10.1021/jp5114812
  • 30. Xiao S, Xu W, Ma H, Fang X. Size-tunable Ag nanoparticles immobilized in electrospun nanofibers: synthesis, characterization, and application for catalytic reduction of 4-nitrophenol. RSC Advances 2012; 2: 319-327. doi: 10.1039/C1RA00127B
  • 31. Majumdar R. Bag BG, Ghosh P. Mimusops elengi bark extract mediated green synthesis of gold nanoparticles and study of its catalytic activity. Applied Nanoscience 2016; 6: 521-528. doi: 10.1007/s13204-015-0454-2
  • 32. Aitenneite H, Abboud Y, Tanane O, Solhy A, Sebti S et al. Rapid and green microwave-assisted synthesis of silver nanoparticles using aqueous Phoenix dactylifera L. (date palm) leaf extract and their catalytic activity for 4-nitrophenol reduction. Journal of Material and Environmental Sciences 2016; 7: 2335-2339.
  • 33. Gopalakrishnan R, Loganathan B, Dinesh S, Raghu K. Strategic green synthesis, characterization and catalytic application to 4-nitrophenol reduction of palladium nanoparticles. Journal of Cluster Science 2017; 28: 2123-2131. doi: 10.1007/s10876-017-1207-z
  • 34. Saikia H, Borah BJ, Yamada Y, Bharali P. Enhanced catalytic activity of CuPd alloy nanoparticles towards reduction of nitroaromatics and hexavalent chromium. Journal of Colloid and Interface Science 2017; 486: 46-57. doi: 10.1016/j.jcis.2016.09.056
  • 35. Deshmukh S, Dhokale R, Yadav H, Achary S, Delekar S. Titania-supported silver nanoparticles: an efficient and reusable catalyst for reduction of 4-nitrophenol. Applied Surface Science 2013; 273: 676-683. doi: 10.1016/j.apsusc.2013.02.110
  • 36. Astruc D, Lu F, Aranzaes JR. Nanoparticles as recyclable catalysts: the frontier between homogeneous and heterogeneous catalysis. Angewandte Chemie International Edition 2005; 44: 7852-7872. doi: 10.1002/anie.200500766
Turkish Journal of Chemistry-Cover
  • ISSN: 1300-0527
  • Yayın Aralığı: Yılda 6 Sayı
  • Yayıncı: TÜBİTAK
Sayıdaki Diğer Makaleler

Zahra HOSSEINZADEH, Nima RAZZAGHI-ASL, Ali RAMAZANI, Hamideh AGHAHOSSEINI, Ali RAMAZANI

Halit MUĞLU, Hasan YAKAN, Temel Kan BAKIR

Choline derivatives immobilized on silica to catalyze transesterification reaction for production of glycerophosphocholine

Dan CHEN, Wenwen ZHENG, Longhui WEI, Kai TANG, Binglin LI, Binxia ZHAO, Xiaoli ZHANG

Laila SADALLAH, Aicha BOUKHRISS, Hassan HANNACHE, Said GMOUH

Nucleophilic substitution reactions of monofunctional nucleophilic reagents with cyclotriphosphazenes containing 2,2-dioxybiphenyl units

Gönül YENİLMEZ ÇİFTÇİ, Esra TANRIVERDİ EÇİK, Eda ERDEMİR, Hanife İBİŞOĞLU, Gizem DEMİR, Fatma YÜKSEL

Abidin GÜMRÜKÇÜOĞLU, Aysel BAŞOĞLU, Sevgi KOLAYLI, Saliha DİNÇ, Meryem KARA, Miraç OCAK, Ümmühan OCAK

Çağrı Ceylan KOÇAK, Süleyman KOÇAK, Şükriye KARABİBEROĞLU, Zekerya DURSUN

Chemosensor properties of 7-hydroxycoumarin substituted cyclotriphosphazenes

Gönül YENİLMEZ ÇİFTÇİ, Elif ŞENKUYTU, Sergen YILMAZ, Nagihan BAYIK, Esra Nur KAYA, Mustafa BULUT, Mahmut DURMUŞ

Synthesis, optical, and structural properties of bisphenol-bridged aromatic cyclic phosphazenes

Burcu TOPALOĞLU AKSOY, Süreyya Oğuz TÜMAY, Bünyemin ÇOŞUT, Serkan YEŞİLOT, Ahmet ŞENOCAK

Synthesis and spectroscopic properties of (N/O) mono- and dispirocyclotriphosphazene derivatives with benzyl pendant arms: study of biological activity

Özlem İŞCAN, Reşit CEMALOĞLU, Nuran ASMAFİLİZ, Zeynel KILIÇ, Tuncer HÖKELEK, Leyla AÇIK, Pelin ÖZBEDEN