Pyrene-BODIPY-substituted novel water-soluble cyclotriphosphazenes: synthesis, characterization, and photophysical properties

In the present work, pyrene-boron-dipyrromethene (BODIPY)-substituted novel water-soluble cyclotriphosphazene derivatives (6 and 7) were synthesized by click reactions between a cyclotriphosphazene derivative with a hydrophilic glycol side group (2) and BODIPYs (4 and 5). All of the new compounds (2, 6, and 7) were characterized by Fourier-transform infrared and nuclear magnetic resonance spectroscopy, as well as mass spectrometry and elemental analysis. The photophysical properties of the BODIPY-substituted cyclotriphosphazenes (6 and 7) were investigated by UV-Vis and fluorescence emission spectroscopy in water and water/solvent mixtures. It was found that the target compounds were soluble in water and could be potential candidates as water-soluble fluorescent dyes for the desired applications. Key words: Cyclotriphosphazene, BODIPY, pyrene, water-soluble, photophysical

___

  • 1. Görl D, Zhang X, Würthner F. Molecular assemblies of perylene bisimide dyes in water. Angewandte Chemie International Edition 2012; 51 (26): 6328-6348. doi: 10.1002/anie.201108690
  • 2. Loudet A, Burgess K. BODIPY dyes and their derivatives: syntheses and spectroscopic properties. Chemical Reviews 2007; 107 (11): 4891-4932. doi: 10.1021/cr078381n
  • 3. Ziessel R, Ulrich G, Harriman A. The chemistry of BODIPY: a new El Dorado for fluorescence tools. New Journal of Chemistry 2007; 31 (4): 496-501. doi: 10.1039/b617972j
  • 4. Ulrich G, Ziessel R, Harriman A. The chemistry of fluorescent BODIPY dyes: versatility unsurpassed. Angewandte Chemie International Edition 2008; 47 (7): 1184-1201. doi: 10.1002/anie.200702070
  • 5. Bricks JL, Kovalchuk A, Trieflinger C, Nofz M, Büschel M et al. On the development of sensor molecules that display Fe III -amplified fluorescence. Journal of the American Chemical Society 2005; 127 (39): 13522-13529. doi: 10.1021/ja050652t
  • 6. Qin WW, Baruah M, Stefan A, Auweraer MV, Boens N. Photophysical properties of BODIPY-derived hydroxyaryl fluorescent pH probes in solution. European Journal of Chemical Physics and Physical Chemistry 2005; 6 (11): 2343-2351. doi: 10.1002/cphc.200500341
  • 7. Wagner RW, Lindsey JS. Boron-dipyrromethene dyes for incorporation in synthetic multi-pigment light-harvesting arrays. Pure and Applied Chemistry 1996; 68 (7): 1373-1380. doi: 10.1351/pac199668071373
  • 8. Rurack K, Kollmannsberger M, Daub J. Molecular switching in the near infrared (NIR) with a functionalized boron-dipyrromethene dye. Angewandte Chemie International Edition 2001; 40 (2): 385-387. doi: 10.1002/1521- 3773(20010119)40:2<385::AID-ANIE385>3.0.CO;2-F
  • 9. Gabe Y, Urano Y, Kikuchi K, Kojima H, Nagano T. Highly sensitive fluorescence probes for nitric oxide based on boron dipyrromethene chromophore rational design of potentially useful bioimaging fluorescence probe. Journal of the American Chemical Society 2004; 126 (10): 3357-3367. doi: 10.1021/ja037944j
  • 10. Guo B, Peng X, Cui A, Wu Y, Tian M et al. Synthesis and spectral properties of new boron dipyrromethene dyes. Dyes and Pigments 2007; 73 (2): 206-210. doi: 10.1016/j.dyepig.2005.11.007
  • 11. Coskun A, Akkaya EU. Difluorobora-s-diazaindacene dyes as highly selective dosimetric reagents for fluoride anions. Tetrahedron Letters 2004; 45 (25): 4947-4949. doi: 10.1016/j.tetlet.2004.04.130
  • 12. Fan G, Yang L, Chen Z. Water-soluble BODIPY and aza-BODIPY dyes: synthetic progress and applications. Frontiers of Chemical Science and Engineering 2014; 8 (4): 405-417. doi: 10.1007/s11705-014-1445-7
  • 13. Ksenofontova KV, Ksenofontov AA, Khodov IA, Rumyantsev EV. Novel BODIPY-conjugated amino acids: synthesis and spectral properties. Journal of Molecular Liquids 2019; 283: 695-703. doi: 10.1016/j.molliq.2019.03.148
  • 14. Uriel C, Sola-Llano R, Bañuelos J, Gomez AM, Lopez JC. A malonyl-based scaffold for conjugatable multivalent carbohydrate-bodipy presentations. Molecules 2019; 24: 2050-2061. doi: 10.3390/molecules24112050
  • 15. Rao MR, Bolligarla R, Butcher RJ, Ravikanth M. Hexa boron-dipyrromethene cyclotriphosphazenes: synthesis, crystal structure, and photophysical properties. Inorganic Chemistry 2010; 49: 10606-10616. doi: 10.1021/ic1016092
  • 16. Cosut B. Highly efficient energy transfer in BODIPY–pyrene decorated cyclotriphosphazene. Dyes and Pigments 2014; 100: 11-16. doi: 10.1016/j.dyepig.2013.07.022
  • 17. Okutan E, Tümay SO, Yeşilot S. Colorimetric fluorescent sensors for hemoglobin based on BODIPY dyes. Journal of Fluorescence 2016; 26: 2333-2343. doi: 10.1007/s10895-016-1929-6
  • 18. Şenkuytu E, Cebesoy Z, Yenilmez-Çiftçi G, Tanrıverdi-Eçik E. Study on the synthesis, photophysical properties and singlet oxygen generation behavior of BODIPY-functionalized cyclotriphosphazenes. Journal of Fluorescence 2017; 27: 595-601. doi: 10.1007/s10895-016-1987-9
  • 19. Tanrıverdi-Eçik E, Şenkuytu E, Cebesoy Z, Yenilmez-Çiftçi G. BODIPY decorated dendrimeric cyclotriphosphazene photosensitizers: synthesis and efficient singlet oxygen generators. Royal Society of Chemistry Advances 2016; 6: 47600-47606. doi: 10.1039/c6ra07171f
  • 20. Çetindere S, Tümay SO, Senocak A, Kılıç A, Durmuş M et al. Novel pyrene-BODIPY dyes based on cyclotriphosphazene scaffolds: synthesis, photophysical and spectroelectrochemical properties. Inorganica Chimica Acta 2019; 494: 132-140. doi: 10.1016/j.ica.2019.05.022
  • 21. Tümay SO, Yıldırım-Sarıkaya S, Yeşilot S. Novel iron(III) selective fluorescent probe based on synergistic effect of pyrene-triazole units on a cyclotriphosphazene scaffold and its utility in real samples. Journal of Luminescence 2018; 196: 126-135. doi: 10.1016/j.jlumin.2017.12.019
  • 22. Ardıç-Alidağı H, Tümay SO, Senocak A, Yeşilot S. Pyrene functionalized cyclotriphosphazene-based dyes: synthesis, intramolecular excimer formation, and fluorescence receptor for the detection of nitro-aromatic compounds. Dyes and Pigments 2018; 153: 172-181. doi: 10.1016/j.dyepig.2018.02.012
  • 23. Wilfert S, Iturmendi A, Schoefberger W, Kryeziu K, Heffeter P et al. Water-soluble, biocompatible polyphosphazenes with controllable and pH-promoted degradation behavior. Journal of Polymer Science Part A 2014; 52: 287-294. doi: 10.1002/pola.27002
  • 24. Christova D, Ivanova SD, Velichkova RS, Tzvetkova P, Mihailova P et al. New functionalized cyclotriphosphazenes - synthesis and application in the sol-gel process. Designed Monomers and Polymers 2001; 4: 329-341. doi: 10.1163/156855501753210817
  • 25. Selvaraj II, Chaklanobis S, Chandrasekhar V. New lipophilic cyclo- and poly-phosphazenes containing surfactant substituents. Polymer International 1998; 46: 111-116. doi: 10.1002/(SICI)1097-0126(199806)46:2<111::AIDPI973>3.0.CO;2-R
  • 26. Uslu A, Kılıç A, Güvenaltın Ş. The investigation of structural and thermosensitive properties of new phosphazene derivative bearing glycol and aminoalcohol. Inorganica Chimica Acta 2010; 363: 3721-3726. doi: 10.1016/j.ica.2010.05.032
  • 27. Uslu A, Kılıç A, Güvenaltın Ş. Structural and thermosensitive properties of novel octopus shape cyclotriphosphazenes. Polyhedron 2010; 29: 2516-2521. doi: 10.1016/j.poly.2010.05.026
  • 28. Yenilmez-Çiftçi G, Şenkuytu E, Bulut M, Durmuş M. Novel coumarin substituted water soluble cyclophosphazenes as “turn-off” type fluorescence chemosensors for detection of Fe 3+ ions in aqueous media. Journal of Fluorescence 2015; 25: 1819-1830. doi: 10.1007/s10895-015-1672-4
  • 29. Lakowicz JR. Principles of Fluorescence Spectroscopy, Third Edition. New York, NY, USA: Springer, 2006.
  • 30. Yeşilot S, Çoşut B, Ardıç-Alidağı H, Hacıvelioğlu F, Altınbaş-Özpınar G et al. Intramolecular excimer formation in hexakis-(pyrenyloxy)cyclotriphosphazene: photophysical properties, crystal structure, and theoretical investigation. Dalton Transactions 2014; 43: 3428-3433. doi: 10.1039/c3dt52957f
  • 31. Uslu A, Tümay SO, Şenocak A, Yuksel F, Özcan E et al. Imidazole/benzimidazole-modified cyclotriphosphazenes as highly selective fluorescent probes for Cu 2+ : synthesis, configurational isomers, and crystal structures. Dalton Transactions 2017; 46: 9140-9156. doi: 10.1039/C7DT01134B
  • 32. Ozay H, Kagit R, Yildirim M, Yesilot S, Ozay O. Novel hexapodal triazole linked to a cyclophosphazene core rhodamine-based chemosensor for selective determination of Hg 2+ ions. Journal of Fluorescence 2014; 24: 1593- 1601. doi: 10.1007/s10895-014-1444-6
  • 33. Magde D, Rojas GE, Seybold PG. Solvent dependence of the fluorescence lifetimes of xanthene dyes. Photochemistry and Photobiology 1999; 70 (5): 737-744. doi: 10.1111/j.1751-1097.1999.tb08277.x
  • 34. Jacques P, Braun AM. Laser flash photolysis of phthalocyanines in solution and microemulsion. Helvetica Chimica Acta 1981; 64: 1800-1806. doi: 10.1002/hlca.19810640610
  • 35. Hooper N, Beeching LJ, Dyke JM, Morris A, Ogden JS et al. A study of the thermal decomposition of 2- azidoethanol and 2-azidoethyl acetate by ultraviolet photoelectron spectroscopy and matrix isolation infrared spectroscopy. Journal of Physical Chemistry 2002; 106: 9968-9975. doi: 10.1021/jp020625e
  • 36. Atilgan S, Ozdemir T, Akkaya EU. Selective Hg(II) sensing with improved stokes shift by coupling the internal charge transfer process to excitation energy transfer. Organic Letters 2010; 12: 4792-4795. doi: 10.1021/ol1019426
  • 37. Allcock HR, Bender JD, Marford RV, Berda EB. Synthesis and characterization of novel solid polymer electrolytes based on poly(7-oxanorbornenes) with pendent oligoethyleneoxy-functionalized cyclotriphosphazenes. Macromolecules 2003; 36: 3563-3569. doi: 10.1021/ma0217478