Synthesis and investigation of langbeinite-related strontium- and iron-containing phosphates

Synthesis and investigation of langbeinite-related strontium- and iron-containing phosphates

The partial substitution of potassium atoms by strontium atoms in initial matrix K3Fe 2 (PO4)3 withformation of complex phosphates K3−2x Srx Fe 2 (PO4)3 (x = 0.75, 1.0, and 1.25) was determined using a solid-statereaction method. According to powder X-ray diffraction (XRD) data, the prepared phosphates with x = 1.0 and 1.25crystallize in a cubic system (space group P21 3) and belong to langbeinite family compounds, while for the samplewith x = 0.75 a mixture of langbeinite-type phase and a minor amount of K3Fe 2 (PO4)3 was obtained. The decreasingtrend of lattice parameter a with increase of Sr amount in the phosphate confirmed the incorporation of strontium inthe langbeinite-related structure. The thermal analysis results indicate that the obtained langbeinite-related compoundsare stable upon heating and their melting points are higher than 1000 °C. It should be noted that the determined ironcontaining phosphates can be obtained at temperature lower than 900 °C, which creates a perspective for using them asmatrixes for immobilization of radioactive strontium.

___

  • 1. Jedinakova-Krizova, V. J. Radioanal Nucl Ch. 1998, 229, 13-18.
  • 2. Gennaro, B.; Colella, A.; Aprea, P.; Colella, C. Micropor. Mesopor. Mat. 2003, 61, 159-165.
  • 3. Pabalan, R. T.; Bertetti, F. P. In: Cation-Exchange Properties of Natural Zeolites; Bish, D. L.; Ming, D. W., Eds. Mineralogical Society of America: Washington, DC, USA, 2001, pp. 453-518.
  • 4. Chelishchev, N. F. In: Ming, D. W.; F.A. Mumpton, F. A., Eds. Natural Zeolites ’93; International Committee on Natural Zeolites: Brockport, NY, USA, 1995, pp. 525-532.
  • 5. Cappelletti, P.; Rapisardo, G.; Gennaro, B. J. Nucl. Mater. 2011, 414, 451-457.
  • 6. Plodinec, M. J. Glass Technol. 2000, 41, 186-192.
  • 7. Kim, M.; Heo, J. J. Nucl. Mater. 2015, 467, 224-228.
  • 8. Sales, B. C.; Boatner, L. A. Mater. Lett. 1984, 2, 301-304.
  • 9. Ojovan, M.; Lee, W. Metall. Mater. Trans. A 2011, 42, 837-851.
  • 10. Gin, S.; Abdelouas, A.; Criscenti, L. J.; Ebert, W. L.; Ferrand, K.; Geisler, T.; Harrison, M. T.; Inagaki, Y.; Mitsui, S.; Mueller, K. T. et. al. Mater. Today 2013, 16, 243-248.
  • 11. Donald, I. W.; Metcalfe, B. L.; Fong, S. K.; Gerrard, L. A.; Strachan, D. M.; Scheele, R. D. J. Nucl. Mater. 2007, 361, 78-93.
  • 12. He, Y.; Bao, W.; Song, C. J. Nucl. Mater. 2002, 305, 202-208.
  • 13. Huang, Y.; Zhang, H.; Zhou, X.; Peng, S. J. Nucl. Mater. 2017, 485, 105-112.
  • 14. Clavier, N.; Podor, R.; Dacheux, N. J. Eur. Ceram. Soc. 2011, 31, 941-976.
  • 15. Kumar, S. P.; Gopal, B. J. Nucl. Mater. 2015, 458, 224-232.
  • 16. Meldrum, A.; Boatner, L. A.; Weber, W. T.; Ewing, R. C. Geochim. Cosmochim. Ac. 1998, 62, 2509-2520.
  • 17. Dacheux, N.; Clavier, N.; Podor, R. Am. Mineral. 2013, 98, 833-847.
  • 18. Clavier, N.; Dacheux, N.; Podor, R. Inorg. Chem. 2006, 45, 220-229.
  • 19. Orlova, A. I.; Orlova, M. P.; Solov’eva, E. M.; Loginova, E. E.; Demarin, V. T.; Kazantsev, G. N.; Samoilov, S. G.; Stefanovskii, S. V. Radiochemistry 2006, 48, 561-567.
  • 20. Orlova, A. I. Radiochemistry 2002, 44, 423-445.
  • 21. Nakayama, S.; Itoh, K. J. Eur. Ceram. Soc. 2003, 23, 1047-1052.
  • 22. Haik, A. H.; Deb, S. B.; Chalke, A. B.; Saxena, M. K.; Ramakumar, K. L.; Venugopal, V.; Dharwadkar, S. R. J. Chem. Sci. 2010, 122, 71-82.
  • 23. Gregg, D. J.; Karatchevtseva, I.; Triani, G.; Lumkin, G. R.; Vance, E. R. J. Nucl. Mater. 2013, 441, 203-210.
  • 24. Scheetz, B. E.; Agrawal, D. K.; Breval, E.; Roy, R. Waste Manage. 1994, 14, 489-505.
  • 25. Gregg, D. J.; Karatchevtseva, I.; Thorogood, G. J.; Davis, J.; Bell, B. D. C.; Jackson, M.; Dayal, P.; Ionescu, M.; Triami, G.; Short, K. et al. J. Nucl. Mater. 2014, 446, 224-231.
  • 26. Orlova, A. I.; Volgutov, V. Yu.; Mikhailov, D. A.; Bykov, D. M.; Skuratov, V. A.; Chuvil’deev, V. N.; Nokhrin, A. V.; Boldin, M. S.; Sakharov, N. V. J. Nucl. Mater. 2014, 446, 232-239.
  • 27. Pet’kov, V.; Asabina, E.; Loshkarev, V.; Sukhanov, M. J. Nucl. Mater. 2016, 471, 122-128.
  • 28. Bohre, A.; Shrivastava, O. P. J. Nucl. Mater. 2013, 433, 486-493.
  • 29. Kumar, S.; Gopal, B. J. Alloy Comp. 2016, 657, 422-429.
  • 30. Kumar, S. P.; Gopal, B. J. Alloy Comp. 2014, 615, 419-423.
  • 31. Dacheux, N.; Clavier, N.; Robisson, A. C.; Terra, O.; Audubert, F.; Lartigue, J.; Guy, C. Chimie 2004, 7, 1141- 1152.
  • 32. Terra, O.; Dacheux, N.; Audubert, F.; Podor, R. J. Nucl. Mater. 2006, 352, 224-232.
  • 33. Shrivastava, O. P.; Chourasia, R. J. Hazard. Mater. 2008, 153, 285-292.
  • 34. Ogorodnyk, I. V.; Zatovsky, I. V.; Slobodyanik, N. S.; Baumer, V. N.; Shishkin, O. V. J. Solid State Chem. 2006, 179, 3461-3466.
  • 35. Strutynska, N. Y.; Bondarenko, M. A.; Ogorodnyk, I. V.; Zatovsky, I. V.; Slobodyanik, N. S.; Baumer, V. N.; Puzan, A. N. Cryst. Res. Technol. 2015, 50, 549-555.
  • 36. Ogorodnyk, I. V.; Zatovsky, I. V.; Baumer, V. N.; Slobodyanik, N. S.; Shishkin, O. V.; Vorona, I. P. J. Solid State Chem. 2007, 180, 2838-2844.
  • 37. Zatovsky, I. V.; Slobodyanik, N. S.; Ushchapivskaya, T. I.; Ogorodnyk, I. V.; Babaryk, A. A. Russ. J. Appl. Chem. 2006, 79, 10-15.
  • 38. Strutynska, N. Y.; Bondarenko, M. A.; Ogorodnyk, I. V.; Baumer, V. N.; Slobodyanik, N. S.; Brown, I. D. Acta Crystallogr. E 2015, E71, 251-253.
  • 39. Babaryk, A. A.; Zatovsky, I. V.; Slobodyanik, N. S.; Ogorodnyk, I. V. Z. Naturforsch. 2008, B63, 345-348.
  • 40. Pintard-Screpel, P. M.; D’Yvoire, F. Acta Crystallogr. C 1983, C39, 9-12.
  • 41. Hidouri, M.; López, M. L.; Pico, C.; Wattiaux, A.; Ben Amara, M. J. Mol. Struct. 2012, 1030, 145-148.