Surfactant-controlled aqueous synthesis of $SnO_2 $ nanoparticles via the hydrothermal and conventional heating methods
Surfactant-controlled aqueous synthesis of $SnO_2 $ nanoparticles via the hydrothermal and conventional heating methods
Tin oxide nanoplates and nanoballs were fabricated using a cationic surfactant of cetyltrimethylammonium bromide (CTABr) as an organic supramolecular template and tin(IV) chloride as an inorganic precursor via the hydrothermal and conventional heating methods. Urea, which decomposes to ammonium and hydroxide ions during hydrolysis, was used as the source of slow homogeneous precipitation of $Sn^ {+4} $ with $OH^- $ to control the particle size. The influence of different reaction parameters (time, temperature, and ratio of $Sn^ {+4} $ to CTABr) on particle sizes, particle distribution, and morphology was investigated using X-ray diffraction (XRD), transmission electron microscopy (TEM), and Fourier transform infrared (FTIR) spectroscopy. XRD data showed that the size of the $SnO_2 $ nanoparticles decreased with increasing reaction time using the conventional heating method, while no significant change was observed with the hydrothermal method. Nanoplates with average sizes of 9.36 nm and nanoballs up to 4.51 nm were prepared using different ratios of $Sn^ {+4} $ to CTABr at different temperatures and reaction times by the hydrothermal and conventional heating methods, respectively. Elimination of surfactant from tin-surfactant composites by calcination yielded a porous tin oxide nanostructure.
___
- 1. Kim, T.W.; Lee, D. U.; Choo, D. C.; Kim, J. H.; Kim, H. J.; Jeong, J. H.; Jung, M.; Bahang, J. H.; Park, H. L.; Yoon, Y. S.; Kim, J. Y. J. Phys. Chem. Solids 2002, 63, 881-885.
- 2. Moustafid, T. E.; Cachet, H.; Tribollet, B.; Festy, D. Electrochim. Acta. 2002, 47, 1209-1215.
- 3. Okuya, M.; Kaneko, S.; Hiroshima, K.; Yaggi, I.; Murakami, K. J. Eur. Ceram. Soc. 2001, 21, 2099-2102.
- 4. Chen, F. L.; Liu, M. L. Chem. Commun. 1999, 1829-1830.
- 5. Kim, C.; Noh, M.; Choi, M.; Cho, J.; Park, B. Chem. Mater. 2005, 17, 3297-3301.
- 6. Chou, L.; Cai, Y.; Zhang, B.; Niu, J.; Ji, S.; Li, S. Appl. Catal. A Gen. 2003, 238, 185-191.
- 7. Wierzchowski, P. T; Zatorski, L. W. Appl. Catal. B Environ. 2003, 44, 53-65.
- 8. Moulson, A. J.; Herbert, J. M. Electroceramics, Chapman & Hall, New York, 1990.
- 9. Shimizu, Y.; Egashira, M. MRS Bull. 1999, 24, 18-22.
- 10. Wang, H. C.; Li, Y.; Yang, M. J. Sens. Actuators. B Chem. 2006, 119, 380-383.
- 11. Li, G. J.; Zhang, X. H.; Kawi, S. Sens. Actuators. B Chem. 1999, 60, 64-70.
- 12. Li, L.; Zhu, Z.; Yao, X.; Lu, G.; Yan, Z. Micro. Mes. Mater. 2008, 112, 621-626.
- 13. Sharp, S. L.; Kumar, G.; Vicenzi, E. P.; Bocarsly, A. B. Chem. Mater. 1998, 10, 880-885.
- 14. Wang, Y. D.; Ma, C. L.; Su, X. D.; Li, H. D. Mater. Lett. 2001, 51, 285-288.
- 15. Zhou, S.; Lu, S.; Ke, Y.; Li, J. Mater. Lett. 2003, 57, 2679-2681.
- 16. Pan, C.; Zhang, D.; Shi, L. J. Solid State Chem. 2008, 181, 1298-1306.
- 17. Sarkar, A.; Pramanik, S.; Achariya, A.; Pramanik, P. Micro. Meso. Mater. 2008, 115, 426-431.
- 18. Firooz, A. A.; Mahjoub, A. R.; Khodadadi, A. A. Mater. Lett. 2008, 62, 1789-1792.
- 19. Acarbas, O.; Suvaci, E.; Dogan, A. Ceram. Int. 2007, 33, 537-542.
- 20. Song, K. C.; Kang, Y. Mater. Lett. 2000, 42, 283-289.
- 21. Li, F.; Chen, L.; Chen, Z.; Xu, J.; Zhu, J.; Xin, X. Mater. Chem. Phys. 2002, 73, 335-338.
- 22. Song, K. C.; Kim, J. H. J. Colloid Interf. Sci. 1999, 212, 193-196.
- 23. Adnan, R.; Razana, N. A.; Rahman, I. A.; Farrukh, M. A. J. Chin. Chem. Soc. 2010, 57, 222-229.
- 24. Lee, J. H.; Park, S. J. J. Am. Ceram. Soc. 1993, 76, 777-780.
- 25. Bhagwat, M.; Shah, P.; Ramaswamy, V. Mater. Lett. 2003, 57, 1604-1611.
- 26. Baik, N. S.; Sakai, N.; Miura, N.; Yamazoe, N. J. Am. Ceram. Soc. 2000, 83, 2983-2897.
- 27. Willard, H. H.; Tang, N. K. J. Am. Chem. Soc. 1937, 59, 1190-1196.
- 28. Gordon, L. The precipitation of hydrous oxides of tin and thorium from homogeneous solution by the hydrolysis of non-ionizable compounds, Ph.D. dissertation, The University of Michigan, 1947.
- 29. Somiya, S.; Roy, R. Bull. Mater. Sci. 2000, 23, 453-460.
- 30. Wang, Y. D.; Ma, C. L.; Sun, X. D.; Li, H. D. Inorg. Chem. Commun. 2002, 5, 751-755.
- 31. Guo, C.; Cao, M.; Hu, C. Inorg. Chem. Commun. 2004, 7, 929-931.
- 32. Chen, D.; Gao, L. J. Colloid Interf. Sci. 2004, 279, 137-142.
- 33. Wu, N. L.; Tung, C. Y. J. Am. Ceram. Soc. 2004, 87, 1741-1746.
- 34. Wang, Y. D.; Ma, C. L.; Sun, X. D.; Li, H. D. Inorg. Chem. Commun. 2001, 4, 223-226.
- 35. Shih, W. J.; Wang, M. C.; Hon, M. H. J. Cryst. Growth. 2005, 275, e2339-e2344.
- 36. Zhang, J.; Gao, L. J. Solid State Chem. 2004, 177, 1425-1430.
- 37. Xi, L.; Qian, D.; Tang, X.; Chen, C. Mater. Chem. Phys. 2008, 108, 232-236.
- 38. Krishnakunar, T.; Pinna, N.; Kumari, K. P.; Perumal, K.; Jayaprakash, R. Mater. Lett. 2008, 62, 3437-3440.
- 39. Kim, H.; Shim, S. H. J. Alloys Compd. 2006, 426, 286-289.
- 40. Lee A. C; Lin, R. H.; Yang, C. Y.; Lin, M. H.; Wang ,W. Y. Mater. Chem. Phys. 2008, 109, 275-280.
- 41. Roger, C.; Hampden-Smith, M. J.; Schaefer, D. W.; Beaucage, G. B. J. Sol-Gel Sci. Techn. 1994, 2, 67-72
- 42. Wen, Z.; Wang, Q.; Li, J. Adv. Funct. Mater. 2007, 17, 2772-2778.
- 43. Klabunde, K. J. Nanoscale Materials in Chemistry, Wiley-Interscience, New York, 2001.