Surfactant-controlled aqueous synthesis of $SnO_2 $ nanoparticles via the hydrothermal and conventional heating methods

Surfactant-controlled aqueous synthesis of $SnO_2 $ nanoparticles via the hydrothermal and conventional heating methods

Tin oxide nanoplates and nanoballs were fabricated using a cationic surfactant of cetyltrimethylammonium bromide (CTABr) as an organic supramolecular template and tin(IV) chloride as an inorganic precursor via the hydrothermal and conventional heating methods. Urea, which decomposes to ammonium and hydroxide ions during hydrolysis, was used as the source of slow homogeneous precipitation of $Sn^ {+4} $ with $OH^- $ to control the particle size. The influence of different reaction parameters (time, temperature, and ratio of $Sn^ {+4} $ to CTABr) on particle sizes, particle distribution, and morphology was investigated using X-ray diffraction (XRD), transmission electron microscopy (TEM), and Fourier transform infrared (FTIR) spectroscopy. XRD data showed that the size of the $SnO_2 $ nanoparticles decreased with increasing reaction time using the conventional heating method, while no significant change was observed with the hydrothermal method. Nanoplates with average sizes of 9.36 nm and nanoballs up to 4.51 nm were prepared using different ratios of $Sn^ {+4} $ to CTABr at different temperatures and reaction times by the hydrothermal and conventional heating methods, respectively. Elimination of surfactant from tin-surfactant composites by calcination yielded a porous tin oxide nanostructure.

___

  • 1. Kim, T.W.; Lee, D. U.; Choo, D. C.; Kim, J. H.; Kim, H. J.; Jeong, J. H.; Jung, M.; Bahang, J. H.; Park, H. L.; Yoon, Y. S.; Kim, J. Y. J. Phys. Chem. Solids 2002, 63, 881-885.
  • 2. Moustafid, T. E.; Cachet, H.; Tribollet, B.; Festy, D. Electrochim. Acta. 2002, 47, 1209-1215.
  • 3. Okuya, M.; Kaneko, S.; Hiroshima, K.; Yaggi, I.; Murakami, K. J. Eur. Ceram. Soc. 2001, 21, 2099-2102.
  • 4. Chen, F. L.; Liu, M. L. Chem. Commun. 1999, 1829-1830.
  • 5. Kim, C.; Noh, M.; Choi, M.; Cho, J.; Park, B. Chem. Mater. 2005, 17, 3297-3301.
  • 6. Chou, L.; Cai, Y.; Zhang, B.; Niu, J.; Ji, S.; Li, S. Appl. Catal. A Gen. 2003, 238, 185-191.
  • 7. Wierzchowski, P. T; Zatorski, L. W. Appl. Catal. B Environ. 2003, 44, 53-65.
  • 8. Moulson, A. J.; Herbert, J. M. Electroceramics, Chapman & Hall, New York, 1990.
  • 9. Shimizu, Y.; Egashira, M. MRS Bull. 1999, 24, 18-22.
  • 10. Wang, H. C.; Li, Y.; Yang, M. J. Sens. Actuators. B Chem. 2006, 119, 380-383.
  • 11. Li, G. J.; Zhang, X. H.; Kawi, S. Sens. Actuators. B Chem. 1999, 60, 64-70.
  • 12. Li, L.; Zhu, Z.; Yao, X.; Lu, G.; Yan, Z. Micro. Mes. Mater. 2008, 112, 621-626.
  • 13. Sharp, S. L.; Kumar, G.; Vicenzi, E. P.; Bocarsly, A. B. Chem. Mater. 1998, 10, 880-885.
  • 14. Wang, Y. D.; Ma, C. L.; Su, X. D.; Li, H. D. Mater. Lett. 2001, 51, 285-288.
  • 15. Zhou, S.; Lu, S.; Ke, Y.; Li, J. Mater. Lett. 2003, 57, 2679-2681.
  • 16. Pan, C.; Zhang, D.; Shi, L. J. Solid State Chem. 2008, 181, 1298-1306.
  • 17. Sarkar, A.; Pramanik, S.; Achariya, A.; Pramanik, P. Micro. Meso. Mater. 2008, 115, 426-431.
  • 18. Firooz, A. A.; Mahjoub, A. R.; Khodadadi, A. A. Mater. Lett. 2008, 62, 1789-1792.
  • 19. Acarbas, O.; Suvaci, E.; Dogan, A. Ceram. Int. 2007, 33, 537-542.
  • 20. Song, K. C.; Kang, Y. Mater. Lett. 2000, 42, 283-289.
  • 21. Li, F.; Chen, L.; Chen, Z.; Xu, J.; Zhu, J.; Xin, X. Mater. Chem. Phys. 2002, 73, 335-338.
  • 22. Song, K. C.; Kim, J. H. J. Colloid Interf. Sci. 1999, 212, 193-196.
  • 23. Adnan, R.; Razana, N. A.; Rahman, I. A.; Farrukh, M. A. J. Chin. Chem. Soc. 2010, 57, 222-229.
  • 24. Lee, J. H.; Park, S. J. J. Am. Ceram. Soc. 1993, 76, 777-780.
  • 25. Bhagwat, M.; Shah, P.; Ramaswamy, V. Mater. Lett. 2003, 57, 1604-1611.
  • 26. Baik, N. S.; Sakai, N.; Miura, N.; Yamazoe, N. J. Am. Ceram. Soc. 2000, 83, 2983-2897.
  • 27. Willard, H. H.; Tang, N. K. J. Am. Chem. Soc. 1937, 59, 1190-1196.
  • 28. Gordon, L. The precipitation of hydrous oxides of tin and thorium from homogeneous solution by the hydrolysis of non-ionizable compounds, Ph.D. dissertation, The University of Michigan, 1947.
  • 29. Somiya, S.; Roy, R. Bull. Mater. Sci. 2000, 23, 453-460.
  • 30. Wang, Y. D.; Ma, C. L.; Sun, X. D.; Li, H. D. Inorg. Chem. Commun. 2002, 5, 751-755.
  • 31. Guo, C.; Cao, M.; Hu, C. Inorg. Chem. Commun. 2004, 7, 929-931.
  • 32. Chen, D.; Gao, L. J. Colloid Interf. Sci. 2004, 279, 137-142.
  • 33. Wu, N. L.; Tung, C. Y. J. Am. Ceram. Soc. 2004, 87, 1741-1746.
  • 34. Wang, Y. D.; Ma, C. L.; Sun, X. D.; Li, H. D. Inorg. Chem. Commun. 2001, 4, 223-226.
  • 35. Shih, W. J.; Wang, M. C.; Hon, M. H. J. Cryst. Growth. 2005, 275, e2339-e2344.
  • 36. Zhang, J.; Gao, L. J. Solid State Chem. 2004, 177, 1425-1430.
  • 37. Xi, L.; Qian, D.; Tang, X.; Chen, C. Mater. Chem. Phys. 2008, 108, 232-236.
  • 38. Krishnakunar, T.; Pinna, N.; Kumari, K. P.; Perumal, K.; Jayaprakash, R. Mater. Lett. 2008, 62, 3437-3440.
  • 39. Kim, H.; Shim, S. H. J. Alloys Compd. 2006, 426, 286-289.
  • 40. Lee A. C; Lin, R. H.; Yang, C. Y.; Lin, M. H.; Wang ,W. Y. Mater. Chem. Phys. 2008, 109, 275-280.
  • 41. Roger, C.; Hampden-Smith, M. J.; Schaefer, D. W.; Beaucage, G. B. J. Sol-Gel Sci. Techn. 1994, 2, 67-72
  • 42. Wen, Z.; Wang, Q.; Li, J. Adv. Funct. Mater. 2007, 17, 2772-2778.
  • 43. Klabunde, K. J. Nanoscale Materials in Chemistry, Wiley-Interscience, New York, 2001.
Turkish Journal of Chemistry-Cover
  • ISSN: 1300-0527
  • Yayın Aralığı: 6
  • Yayıncı: TÜBİTAK
Sayıdaki Diğer Makaleler

Surfactant-controlled aqueous synthesis of $SnO_2 $ nanoparticles via the hydrothermal and conventional heating methods

Boon-Teck HENG, Muhammad Akhyar FARRUKH, Rohana ADNAN

A simple and efficient procedure for synthesis of optically active 1,3,4-oxadiazole derivatives containing L-amino acid moieties

Naser FOROUGHIFAR, Akbar Mobinikhaledi And Sattar EBRAHIMI, Sattar EBRAHIMI

Silica supported polyphosphoric acid (PPA-$SiO_2$ ): an efficient and reusable heterogeneous catalyst for the one-pot synthesis of α-amino phosphonates

Leila KEISHAMS, Malek Taher MAGHSOODLOU, Sayyed Mostafa Habıbı KHORASSANI, Reza HEYDARI, Nourollah HAZERI, Seyed Sajad SAJADIKHAH, Mohsen ROSTAMIZADEH

Silica supported polyphosphoric acid (PPA-SiO2): an efficient and reusable heterogeneous catalyst for the one-pot synthesis of a -amino phosphonates

Malek Taher MAGHSOODLOU, Sayyed Mostafa Habibi KHORASSANI

Synthesis and spectroscopic studies of some new organometallic chelates derived from bidentate ligands

Kiran SINGH, Parvesh PURI, - DHARAMPAL

A new dinuclear lead(II) complex of 2,3-diphenyl-tetrazole-5-thione: synthesis and characterization

Rui Rui ZHUANG, Fang Fang JIAN, Ke Fei WANG

Friedel-Crafts acylation of arenes with carboxylic acids using silica gel supported $AlCl_3$

Kaveh Parvanak BOROUJENI

Sulfonic acid-functionalized silica: a remarkably efficient heterogeneous reusable catalyst for the one-pot synthesis of 1,4-dihydropyridines

Behzad MOHAMMADI, Sayyed Mohammad Hosseini JAMKARANI, Taghi A. KAMALI

Friedel-Crafts acylation of arenes with carboxylic acids using silica gel supported AlCl3

Kaveh Parvanak BOROUJENI

Preparation of polystyrene/montmorillonite nanocomposites: optimization by response surface methodology (RSM)

S. Erdem YALÇINKAYA, Nuray YILDIZ, Mehmet SAÇAK, Ayla ÇALIMLI