Studies on the Preparation of a,w -Telechelic Polymers by the Combination of Reverse Atom Transfer Radical Polymerization and Atom Transfer Radical Coupling Processes

Monofunctional polystyrenes with cyano, carboxylic acid, and hydroxyl terminal groups were synthesized by reverse atom transfer radical polymerization (RATRP) using corresponding azo initiators in conjunction with copper and iron complexes. These functional polymers were further used in the atom transfer radical coupling (ATRC) reaction in the presence of Cu(I) and Cu(0) in order to obtain telechelic polystyrenes. In the iron-mediated system, while RATRP experiments gave satisfactory results, the corresponding ATRC process yielded polymers with low functionality. The copper-mediated system, however, gave contrary results. In the RATRP step, initiation efficiency was rather low and polymers with relatively higher polydispersity were obtained. ATRC reactions of these polymers were efficient in obtaining telechelics and a maximum extent of coupling qmax = 0.99 can be attained under appropriate conditions.

Studies on the Preparation of a,w -Telechelic Polymers by the Combination of Reverse Atom Transfer Radical Polymerization and Atom Transfer Radical Coupling Processes

Monofunctional polystyrenes with cyano, carboxylic acid, and hydroxyl terminal groups were synthesized by reverse atom transfer radical polymerization (RATRP) using corresponding azo initiators in conjunction with copper and iron complexes. These functional polymers were further used in the atom transfer radical coupling (ATRC) reaction in the presence of Cu(I) and Cu(0) in order to obtain telechelic polystyrenes. In the iron-mediated system, while RATRP experiments gave satisfactory results, the corresponding ATRC process yielded polymers with low functionality. The copper-mediated system, however, gave contrary results. In the RATRP step, initiation efficiency was rather low and polymers with relatively higher polydispersity were obtained. ATRC reactions of these polymers were efficient in obtaining telechelics and a maximum extent of coupling qmax = 0.99 can be attained under appropriate conditions.

___

  • V. Percec, C. Pugh, O. Nuyken, and S.D. Pask, “Macromonomers,Oligomers and Telechelics” in Comprehensive Polymer Science, Vol. 6, Eds.: G. Allen, J.C. Bevington, pp.281-357, Pergamon Press, Oxford, E.J. Goethals, “Telechelic Polymers: Synthesis and Applications” CRC Press, Boca Raton, FL, 1989.
  • Y. Yagci, O. Nuyken and V. Graubner, “Telechelic Polymers” in Encyclopedia of Polymer Science and Technology, 3rdEd., vol. 12, Ed. J.I. Kroschwitz, pp. 57-130, John Wiley & Sons, Inc., New York, 2005.
  • M. Fontanille, “Carbanion Polymerization: Termination and Functionalization” in Comprehensive Polymer Science, Eds.: G.C. Eastmond, A. Ledwith, S. Russo, and P. Sigwalt, Vol. 3, pp.425-432 Pergamon Press, London, 1989.
  • J.P. Kennedy and B. Ivan, “Designed Polymers by Carbocationic Macromolecular Engineering: Theory and Practice” Hanser Verlag, Munchen, 1992.
  • E.J. Goethals, Makromol. Chem. Macromol. Symp. 6, 53-66 (1986).
  • O.W. Webster, Makromol.Chem. Macromol. Symp. 70, 75-81 (1993).
  • O.W. Webster, J. Polym. Sci.,Polym. Chem. Ed. 38, 2855-2860 (2000).
  • J.C. Brosse, D. Depouet, F. Epaillard, J.C. Soatif, G. Legeay and K. Dusek, Adv. Polym. Sci. 81, 167-223 (1987).
  • M.A. Hillmyer and R.H. Grubbs, Polym. Prepr. (Am. Chem. Soc. Div. Polym. Chem.) 34, 388 (1993).
  • M.A. Hillmyer and R.H. Grubbs, Macromolecules 26, 872-874 (1993).
  • C. Fraser, M. Hillmyer, E. Gutierrez and R.H. Grubbs, Macromolecules 28, 7256-7261 (1995).
  • M.A. Hillmyer, S.T. Nguyen, R.H. Grubbs, Macromolecules 30, 718-721 (1997).
  • B.R. Maughon, T. Morita, C.W. Bielawski and R.H. Grubbs, Macromolecules 33, 1929-1935 (2000).
  • T. Morita, B.R. Maughan, C.W. Bielawski and R.H. Grubbs, Macromolecules 33, 6621-6623 (2000).
  • C.W. Bielawski, O.A. Scherman and R.H. Grubbs, Polymer 42, 4939-4945 (2001).
  • C.W. Bielawski, J.M. Jethmalani and R.H. Grubbs, Polymer 44, 3721-3726 (2003).
  • S.A.F. Bon, F.A.C. Bergman, J.J.G.S. van Es, B. Klumperman and A.L. German, “Controlled radical polymerization: towards control of molecular weight” in Controlled Radical Polymerization, Ed., K. Matyjaszewski, pp. 236-255, ACS Symposium Series 685, 1998.
  • M.K. Mishra and Y. Yagci, “Living Radical Polymerization” in Handbook of Radical Vinyl Polymeriza- tion”, pp. 233-274, Marcel Dekker, New York, 1998.
  • J.S. Wang and K. Matyjaszewski, J. Am. Chem. Soc 117, 5614 (1995).
  • S.G. Gaynor, S. Edelman and K. Matyjaszewski, Macromolecules 29, 1079 (1996).
  • K. Matyjaszewski and J. Xia, Chem. Rev. 101, 2921 (2001).
  • M.K. Geoges, R.P.N. Veregin, P.M. Kazmaier and G.K. Hamer, Macromolecules 26, 2987 (1993).
  • US 4 581 429 (1985), invs.: D.H. Solomon, E. Rizzardo and P. Cacioli; Chem. Abstr. 102, 221335 (1985).
  • A. Goto, K. Sato, Y. Tsujii, T. Fukuda, G. Moad, E. Rizzardo and S.H. Thang, Macromolecules 34, 402-408 (2001).
  • C. Barner-Kowollik, J.F. Quinn, D.R. Morsley and T.P. Davis, J. Polym. Sci. Part A: Polym. Chem. Ed. , 1353-1365 (2001).
  • J.S. Wang and K. Matyjaszewski, Macromolecules 28, 7572-7573 (1995).
  • S. Yurteri, I. Cianga and Y. Yagci, Macromol. Chem. Phys. 204, 1771-1783 (2003).
  • T. Sarbu, K.Y. Lin, J. Spanswick, R.R. Gil, D.J. Siegwart, and K. Matyjaszewski, Macromolecules 37, 9700 (2004).
  • C. Yoshikawa, A. Goto, and T. Fukuda, e-Polymers, no. 013 (2002).
  • R. Nagelsdiek, H. Keul, and H. H¨ocker, e-Polymers, no. 049 (2005).
  • T. Sarbu, K.Y. Lin, J. Ell, D.J. Siegwart, J. Spanswick and K. Matyjaszewski, Macromolecules 37, 3120-3127 (2004).
  • Y. Y¨uksel Durmaz, I. Cianga and Y. Yagci, e-Polymers, no. 50 (2006).
  • M.K. Mishra and Y. Yagci, “Functionalization of Polymers” in Handbook of Radical Vinyl Polymeriza- tion”, pp. 215-232, Marcel Dekker, New York, 1998.
Turkish Journal of Chemistry-Cover
  • ISSN: 1300-0527
  • Yayın Aralığı: Yılda 6 Sayı
  • Yayıncı: TÜBİTAK
Sayıdaki Diğer Makaleler

Electron Affinities, Solvation Energies and Redox Potentials of Some Chalcones: Substituents` Effect and Correlation with Semi-Empirical MO Energies

Abdur RAHMAN, Rumana QURESHI, Mehvish KIRAN, Farzana Latif ANSARI

Plasma-Initiated Polymerization of (2-Methacryloyloxyethyl) Thrimethyl Ammonium Chloride

Yangang HE, Gang LI, Jing MIAO, Xueqing YU, Fang YANG

A new and convenient method of generating alkyl isocyanates from alcohols, thiols, and trimethylsilyl ethers using a 2,4,6-trichloro [1,3,5] triazine/n-$Bu_4NOCN$

Batool AKHLAGHINIA, Sima SAMIEI

Synthesis and Spectral Characterisation of Chloro Organotin(IV) di[3(2`-hydroxyphenyl)-5-(4-substituted phenyl) Pyrazolinates]

Umesh Nath TRIPATHI, Mohammad Safi AHMAD, Goriparthi VENUBABU

A New and Convenient Method of Generating Alkyl Isocyanates from Alcohols, Thiols, and Trimethylsilyl Ethers Using a 2,4,6-Trichloro[1,3,5] Triazine/n-Bu4NOCN

Batool AKHLAGHINIA, Sima SAMIEI

Electron affinities, solvation energies and redox potentials of some chalcones: Substituents' effect and correlation with semi-empirical MO energies

Abdur RAHMAN, Rumana QRESHI, Mehvish KIRAN, Farzana Latif ANSARI

A convenient method for the preparation of 2-aminobenzophenone derivaties under ultrasonic irradiation

Javad SAFAEI-GHOMI, Manouchehr FADAEIAN, Alireza HATAMI

Efficient Method for Tetrahydropyranylation of Phenols and Alcohols Using 2,4,6-Trichloro[1,3,5]triazine

Batool AKHLAGHINIA, Elham ROOHI

New Aromatic Polyamide with Azo and Phosphine Oxide Groups in the Main Chain

Khalil FAGHIHI, Mohsen HAGIBEYGI

A Convenient Method for the Preparation of 2-Aminobenzophenone Derivatives under Ultrasonic Irradiation

Javad SAFAEI-GHOMI, Manouchehr FADAEIAN, Alireza HATAMI