Scalable activated carbon/graphene based supercapacitors with improved capacitance retention at high current densities

Scalable activated carbon/graphene based supercapacitors with improved capacitance retention at high current densities

Scalable, highly stable supercapacitor electrodes were developed from the mixture of a tea factory waste based activated carbon (AC) and a low-cost electrochemical exfoliated graphene (EEG). The hybrid electrodes showed notably enhanced stability at high current densities. The AC sample was prepared by chemical method and exposed to a further heat treatment to enhance electrochemical performance. Graphene used in the preparation of hybrid electrodes was obtained by direct electrochemical exfoliation of graphite in an aqueous solution. Detailed structural characterization of AC, EEG, and hybrid material was performed. The original electrochemical performances of AC and EEG were examined in button size cells using an aqueous electrolyte. The hybrid materials were prepared by mixing AC and EEG at different mass percentage ratios, and tested as supercapacitor electrodes under the same conditions. Capacitance stability of the electrodes developed from AC:EEG (70:30) at high currents increased by about 45% compared to the original AC. The highest gravimetric capacitance (110 F/g) was achieved by this hybrid electrode. The hybrid electrode was scaled up to the pouch size and tested using an organic electrolyte. The organic electrolyte was preferred for scaling up due to its wider voltage ranges. The pouch cell had a gravimetric capacitance of 85 F/g and exhibited as good performance as the coin cell in the organic electrolyte.

___

  • 1. Kötz R, Carlen M. Principles and applications of electrochemical capacitors. Electrochimica Acta 2000; 45 (15-16): 2483-2498. doi: 10.1016/ s0013-4686(00)00354-6
  • 2. Frackowiak E, Béguin F. Carbon materials for the electrochemical storage of energy in capacitors. Carbon 2001; 39 (6): 937-950. doi: 10.1016/ s0008-6223(00)00183-4
  • 3. Pandolfo A, Hollenkamp A. Carbon properties and their role in supercapacitors. Journal of Power Sources 2006; 157 (1): 11-27. doi: 10.1016/j. jpowsour.2006.02.065
  • 4. Béguin F, Frackowiak E. Carbons For Electrochemical Energy Storage And Conversion Systems. Boca Raton, Florida: Taylor & Francis, 2010.
  • 5. Wei L, Yushin G. Nanostructured activated carbons from natural precursors for electrical double layer capacitors. Nano Energy 2012; 1 (4): 552-565. doi: 10.1016/j.nanoen.2012.05.002
  • 6. Zhang L, Zhao X. Carbon-based materials as supercapacitor electrodes. Chemical Society Reviews 2009; 38 (9): 2520-2531. doi: 10.1039/ b813846j
  • 7. Burke A. Ultracapacitors: why, how, and where is the technology. Journal of Power Sources 2000; 91 (1): 37-50. doi: 10.1016/s0378- 7753(00)00485-7
  • 8. Chen H, Wang F, Tong S, Guo S, Pan X. Porous carbon with tailored pore size for electric double layer capacitors application. Applied Surface Sciences 2012; 258 (16): 6097-6102. doi: 10.1016/j.apsusc.2012.03.009
  • 9. Li Y, Shang T, Gao J, Jin X. Nitrogen-doped activated carbon/graphene composites as high-performance supercapacitor electrodes. RSC Advances 2017; 7 (31): 19098-19105. doi: 10.1039/c7ra00132k
  • 10. Hayashi J, Kazehaya A, Muroyama K, Watkinson A. Preparation of activated carbon from lignin by chemical activation. Carbon 2000; 38 (13): 1873-1878. doi: 10.1016/s0008-6223(00)00027-0
  • 11. Linares-Solano A, Martın-Gullon I, Salinas-Martınez de Lecea C, Serrano-Talavera B. Activated carbons from bituminous coal: effect of mineral matter content. Fuel 2000; 79 (6): 635-643. doi: 10.1016/s0016-2361(99)00184-2
  • 12. Hayashi J, Uchibayashi M, Horikawa T, Muroyama K, Gomes V. Synthesizing activated carbons from resins by chemical activation with $K_2CO_3$. Carbon 2002; 40 (15): 2747-2752. doi: 10.1016/s0008-6223(02)00151-3
  • 13. Yagmur E, Ozmak M, Aktas Z. A novel method for production of activated carbon from waste tea by chemical activation with microwave energy. Fuel 2008; 87 (15-16): 3278-3285. doi: 10.1016/j.fuel.2008.05.005
  • 14. Elmouwahidi A, Zapata-Benabithe Z, Carrasco-Marín F, Moreno-Castilla C. Activated carbons from KOH-activation of argan (Argania spinosa) seed shells as supercapacitor electrodes. Bioresources Technology 2012; 111: 185-190. doi: 10.1016/j.biortech.2012.02.010
  • 15. Gurten I, Ozmak M, Yagmur E, Aktas Z. Preparation and characterisation of activated carbon from waste tea using $K_2CO_3$. Biomass and Bioenergy 2012; 37: 73-81. doi: 10.1016/j.biombioe.2011.12.030
  • 16. Inal I, Holmes S, Banford A, Aktas Z. The performance of supercapacitor electrodes developed from chemically activated carbon produced from waste tea. Applied Surface Sciences 2015; 357: 696-703. doi: 10.1016/j.apsusc.2015.09.067
  • 17. He X, Ling P, Qiu J, Yu M, Zhang X et al. Efficient preparation of biomass-based mesoporous carbons for supercapacitors with both high energy density and high power density. Journal of Power Sources 2013; 240: 109-113. doi: 10.1016/j.jpowsour.2013.03.174
  • 18. Rufford T, Hulicova-Jurcakova D, Zhu Z, Lu G. Nanoporous carbon electrode from waste coffee beans for high performance supercapacitors. Electrochemistry Communications 2008; 10 (10): 1594-1597. doi: 10.1016/j.elecom.2008.08.022
  • 19. Gurten Inal I, Holmes S, Yagmur E, Ermumcu N, Banford A et al. The supercapacitor performance of hierarchical porous activated carbon electrodes synthesised from demineralised (waste) cumin plant by microwave pretreatment. Journal of Industrial and Engineering Chemistry 2018; 61: 124-132. doi: 10.1016/j.jiec.2017.12.009
  • 20. Chmiola J, Yushin G, Gogotsi Y, Portet C, Simon P et al. Anomalous increase in carbon capacitance at pore sizes less than 1 nanometer. Science 2006; 313 (5794): 1760-1763. doi: 10.1126/science.1132195
  • 21. Leis J, Arulepp M, Kuura A, Lätt M, Lust E. Electrical double-layer characteristics of novel carbide-derived carbon materials. Carbon 2006; 44 (11): 2122-2129. doi: 10.1016/j.carbon.2006.04.022
  • 22. Fernández J, Tennison S, Kozynchenko O, Rubiera F, Stoeckli F et al. Effect of mesoporosity on specific capacitance of carbons. Carbon 2009; 47 (6): 1598-1604. doi: 10.1016/j.carbon.2009.02.012
  • 23. Bleda-Martínez M, Maciá-Agulló J, Lozano-Castelló D, Morallón E, Cazorla-Amorós D et al. Role of surface chemistry on electric double layer capacitance of carbon materials. Carbon 2005; 43 (13): 2677-2684. doi: 10.1016/j.carbon.2005.05.027
  • 24. Kim CH, Pyun SI. Activated carbons as electrode materials in electric double-layer capacitors I. Electrochemical properties of activated carbons in relation to their porous structures and surface oxygen functional groups. Journal of the Korean Ceramic Society 2003; 40 (9): 819-826. doi: 10.4191/kcers.2003.40.9.819
  • 25. Yang W, Ni M, Ren X, Tian Y, Li N et al. Graphene in supercapacitor applications. Current Opinion in Colloid & Interface Science 2015; 20 (5-6): 416-428. doi: 10.1016/j.cocis.2015.10.009
  • 26. Mattevi C, Kim H, Chhowalla M. A review of chemical vapour deposition of graphene on copper. Journal of Materials Chemistry 2011; 21 (10): 3324-3334. doi: 10.1039/c0jm02126a
  • 27. Purkait T, Singh G, Singh M, Kumar D, Dey R. Large area few-layer graphene with scalable preparation from waste biomass for highperformance supercapacitor. Scientific Reports 2017; 7 (1) 15239: 1-14. doi: 10.1038/s41598-017-15463-w
  • 28. Hernandez Y, Nicolosi V, Lotya M, Blighe FM, Sun Z et al. High-yield production of graphene by liquid-phase exfoliation of graphite. Nature Nanotechnology 2008; 3 (9): 563-568. doi: 10.1038/nnano.2008.215
  • 29. Strupinski W, Grodecki K, Wysmolek A, Stepniewski R, Szkopek T et al. Graphene epitaxy by chemical vapor deposition on SiC. Nano Letters 2011; 11 (4): 1786-1791. doi: 10.1021/nl200390e
  • 30. Hummers W, Offeman R. Preparation of graphitic oxide. Journal of American Chemical Society 1958; 80 (6): 1339-1339. doi: 10.1021/ ja01539a017
  • 31. Park S, Ruoff R. Chemical methods for the production of graphenes. Nature Nanotechnology 2009; 4 (4): 217-224. doi: 10.1038/nnano.2009.58
  • 32. Tsai I, Cao J, Le Fevre L,Wang B, Todd R et al. Graphene-enhanced electrodes for scalable supercapacitors. Electrochimica Acta 2017; 257: 372-379. doi: 10.1016/j.electacta.2017.10.056
  • 33. Parvez K, Wu Z, Li R, Liu X, Graf R et al. Exfoliation of graphite into graphene in aqueous solutions of inorganic salts. Journal of American Chemical Society 2014; 136 (16): 6083-6091. doi: 10.1021/ja5017156
  • 34. Deraman M, Nor N, Basri N, Dollah B, Soltaninejad S et al. Graphene and activated carbon based supercapacitor electrodes. Advanced Materials Research 2015; 1112: 231-235. doi: 10.4028/www.scientific.net/amr.1112.231
  • 35. Li Y, Shang T, Gao J, Jin X. Nitrogen-doped activated carbon/graphene composites as high-performance supercapacitor electrodes. RSC Advances 2017; 7 (31): 19098-19105. doi: 10.1039/c7ra00132k
  • 36. Li M, Ding J, Xue J. Mesoporous carbon decorated graphene as an efficient electrode material for supercapacitors. Journal of Materials Chemistry A 2013; 1 (25): 7469. doi: 10.1039/c3ta10890b
  • 37. Yu S, Li Y, Pan N. KOH activated carbon/graphene nanosheets composites as high performance electrode materials in supercapacitors. RSC Advances 2014; 4 (90): 48758-48764. doi: 10.1039/c4ra06710j
  • 38. Zhao M, Zhang Q, Huang J, Tian G, Chen T et al. Towards high purity graphene/single-walled carbon nanotube hybrids with improved electrochemical capacitive performance. Carbon 2013; 54: 403-411. doi: 10.1016/j.carbon.2012.11.055
  • 39. Jha N, Ramesh P, Bekyarova E, Itkis M, Haddon R. High energy density supercapacitor based on a hybrid carbon nanotube-reduced graphite oxide architecture. Advanced Energy Materials 2012; 2 (4): 438-444. doi: 10.1002/aenm.201100697
  • 40. Zhang N, Gao N, Fu C, Liu D, Li S et al. Hierarchical porous carbon spheres/graphene composite for supercapacitor with both aqueous solution and ionic liquid. Electrochimica Acta 2017; 235: 340-347. doi: 10.1016/j.electacta.2017.03.130
  • 41. Yan J, Wei T, Shao B, Ma F, Fan Z et al. Electrochemical properties of graphene nanosheet/carbon black composites as electrodes for supercapacitors. Carbon 2010; 48 (6): 1731-1737. doi: 10.1016/j.carbon.2010.01.014
  • 42. Cetinkaya T, Dryfe R. Electrical double layer supercapacitors based on graphene nanoplatelets electrodes in organic and aqueous electrolytes: effect of binders and scalable performance. Journal of Power Sources 2018; 408: 91-104. doi: 10.1016/j.jpowsour.2018.10.072
  • 43. Yadav P, Basu A, Suryawanshi A, Game O, Ogale S. Highly stable laser-scribed flexible planar microsupercapacitor using mushroom derived carbon electrodes. Advanced Materials Interfaces 2016; 3 (11) 1600057: 1-9. doi: 10.1002/admi.201600057
  • 44. Guo Y, Qi J, Jiang Y, Yang S, Wang Z et al. Performance of electrical double layer capacitors with porous carbons derived from rice husk. Materials Chemistry Physics 2003; 80 (3): 704-709. doi: 10.1016/s0254-0584(03)00105-6
  • 45. Wu F, Tseng R, Hu C, Wang C. Physical and electrochemical characterization of activated carbons prepared from firwoods for supercapacitors. Journal of Power Sources 2004; 138 (1-2): 351-359. doi: 10.1016/j.jpowsour.2004.06.023
  • 46. Wu F, Tseng R, Hu C, Wang C. Effects of pore structure and electrolyte on the capacitive characteristics of steam- and KOH-activated carbons for supercapacitors. Journal of Power Sources 2005; 144 (1): 302-309. doi: 10.1016/j.jpowsour.2004.12.020
  • 47. Ahmed S, Ahmed A, Rafat M. Supercapacitor performance of activated carbon derived from rotten carrot in aqueous, organic and ionic liquid based electrolytes. Journal of Saudi Chemical Society 2018; 22 (8): 993-1002. doi: 10.1016/j.jscs.2018.03.002
  • 48. Kim Y, Lee B, Suezaki H, Chino T, Abe Y et al. Preparation and characterization of bamboo-based activated carbons as electrode materials for electric double layer capacitors. Carbon 2006; 44 (8): 1592-1595. doi: 10.1016/j.carbon.2006.02.011
  • 49. Subramanian V, Luo C, Stephan A, Nahm K, Thomas S et al. Supercapacitors from activated carbon derived from banana fibers. The Journal of Physical Chemistry C 2007; 111 (20): 7527-7531. doi: 10.1021/jp067009t
  • 50. Balathanigaimani M, Shim W, Lee M, Kim C, Lee J et al. Highly porous electrodes from novel corn grains-based activated carbons for electrical double layer capacitors. Electrochemistry Communications 2008; 10 (6): 868-871. doi: 10.1016/j.elecom.2008.04.003
  • 51. Cao W, Yang F. Supercapacitors from high fructose corn syrup-derived activated carbons. Materials Today Energy 2018; 9: 406-415. doi: 10.1016/j.mtener.2018.07.002
  • 52. Rufford T, Hulicova-Jurcakova D, Khosla K, Zhu Z, Lu G. Microstructure and electrochemical double-layer capacitance of carbon electrodes prepared by zinc chloride activation of sugar cane bagasse. Journal of Power Sources 2010; 195 (3): 912-918. doi: 10.1016/j. jpowsour.2009.08.048
  • 53. Ismanto A, Wang S, Soetaredjo F, Ismadji S. Preparation of capacitor’s electrode from cassava peel waste. Bioresources Technology 2010; 101 (10): 3534-3540. doi: 10.1016/j.biortech.2009.12.123
  • 54. Gurten Inal I, Aktas Z. Enhancing the performance of activated carbon based scalable supercapacitors by heat treatment. Applied Surface Sciences 2020; 514: 145895. doi: 10.1016/j.apsusc.2020.145895
  • 55. Köse K, Pişkin B, Aydınol M. Chemical and structural optimization of $ZnCl_2$ activated carbons via high temperature $CO_2$ treatment for EDLC applications. International Journal of Hydrogen Energy 2018; 43 (40): 18607-18616. doi: 10.1016/j.ijhydene.2018.03.222
  • 56. Brunauer S, Emmett P, Teller E. Adsorption of gases in multimolecular layers. Journal of American Chemical Society 1938; 60 (2): 309-319. doi: 10.1021/ja01269a023
  • 57. Sing K, Williams R. Physisorption hysteresis loops and the characterization of nanoporous materials. Adsorption Science & Technology 2004; 22 (10): 773-782. doi: 10.1260/0263617053499032
  • 58. Oh Y, Yoo J, Kim Y, Yoon J, Yoon H et al. Oxygen functional groups and electrochemical capacitive behavior of incompletely reduced graphene oxides as a thin-film electrode of supercapacitor. Electrochimica Acta 2014; 116: 118-128. doi: 10.1016/j.electacta.2013.11.040
  • 59. Li X, Jiang Y, Wang P, Mo Y, Lai W et al. Effect of the oxygen functional groups of activated carbon on its electrochemical performance for supercapacitors. New Carbon Materials 2020; 35 (3): 232-243. doi: 10.1016/s1872-5805(20)60487-5
  • 60. Ferrari A, Meyer J, Scardaci V, Casiraghi C, Lazzeri M et al. Raman spectrum of graphene and graphene layers. Physical Review Letters 2006; 97 (18). doi: 10.1103/physrevlett.97.187401
  • 61. Utkan G. Effective reduction of graphene oxide via Lactococcus Lactis. Celal Bayar University Journal of Science 2020; 16 (2): 155-160. doi: 10.18466/cbayarfbe.710338
  • 62. Mao X, Zhu L, Liu H, Chen H, Ju P et al. Synthesis of graphene via electrochemical exfoliation in different electrolytes for direct electrodeposition of a Cu/graphene composite coating. RSC Advances 2019; 9 (61): 35524-35531. doi: 10.1039/c9ra06541e
  • 63. Nagyte V, Kelly D, Felten A, Picardi G, Shin Y et al. Raman fingerprints of graphene produced by anodic electrochemical exfoliation. Nano Letters 2020; 20 (5): 3411-3419. doi: 10.1021/acs.nanolett.0c00332
Turkish Journal of Chemistry-Cover
  • ISSN: 1300-0527
  • Yayın Aralığı: Yılda 6 Sayı
  • Yayıncı: TÜBİTAK
Sayıdaki Diğer Makaleler

Unsymmetrical zinc phthalocyanines containing thiophene and amine groups as donor for bulk heterojunction solar cells

Gülnur KESER KARAOĞLAN, Öznur DÜLGER KUTLU, Ahmet ALTINDAL

Spectroscopic investigation of defect-state emission in CdSe quantum dots

Gülhan GÜLEROĞLU, Caner ÜNLÜ

Development of a functional impedimetric immunosensor for accurate detection of thyroid-stimulating hormone

Engin ASAV

Scalable activated carbon/graphene based supercapacitors with improved capacitance retention at high current densities

İ. Işıl GÜRTEN İNAL

Graphene preparation and graphite exfoliation

Ahmed A. MOOSA, Mayyadah S. ABED

Synthesis, spectroscopic, thermal, crystal structure properties, and characterization ofnew Hofmann-$T_d$-type complexes with 3-aminopyridine

Zeki KARTAL, Onur ŞAHİN

Synthesis of hydroxy benzoin/benzil analogs and investigation of their antioxidant, antimicrobial, enzyme inhibition, and cytotoxic activities

Rezzan ALİYAZICIOĞLU, Şeyda KANBOLAT, Hasan Erdinç SELLİTEPE, Nuran KAHRİMAN, Şengül ALPAY KARAOĞLU, Arif BOZDEVECİ, İnci Selin DOĞAN, Gonca ÇELİK, Ali AYDIN, Nurettin YAYLI, Gözde KILIÇ

Synthesis and antioxidant activities of new nickel(II) complexes derived from 4-benzyloxysalicylidene-S-methyl/propyl thiosemicarbazones

Songül EĞLENCE BAKIR

Synthesis and molecular docking study of novel COVID-19 inhibitors

Zuhal GERÇEK, Deniz CEYHAN, Erol ERÇAĞ

3-Hydroxy-7,8,9,10-tetrahydro-6H-benzo[c]chromen-6-one and 3-hydroxy-6H-benzo[c] chromen-6-one act as on-off selective fluorescent sensors for Iron (III) under in vitro and ex vivo conditions

Rasime KALKAN, Karar SHUKUR, Mustafa GAZİ, Hayrettin Ozan GÜLCAN, Amirhossein FALLAH, Kerem TERALI