Reduced graphene oxide supported tin oxide-boron oxide flexible paper anodes for Li-ion batteries

Reduced graphene oxide supported tin oxide-boron oxide flexible paper anodes for Li-ion batteries

Freestanding tin oxide-boron oxide/reduced graphene oxide (SnO2 -B2 O3 /rGO) nanocomposite anode wasproduced for Li-ion cells. This binder-free flexible paper anode structure was fabricated by combining SnO2 -B2 O3 composite and graphene oxide which were synthesized through the sol–gel method and Hummers’ method, respectively. Field emission gun scanning electron microscopy, high-resolution transmission electron microscopy, energy dispersive X-ray spectrometer, Fourier transform infrared spectroscopy, Raman spectroscopy, and X-ray diffraction were utilized to characterize anode materials. The Williamson-Hall (W-H) analysis was applied using XRD data to determine crystal size and strain of the lattice. Electrochemical tests, cyclic voltammetry, and electrochemical impedance spectroscopy measurements were performed to determine electrochemical properties of the anodes. The results indicated that the anode formed with SnO2 -B2 O3 particles anchored on the rGO layers provided higher discharge capacity (838 mAh g −1 ) than that of SnO2 /rGO (395 mAh g −1 ) after 100 cycles. The electron-deficient nature of boron supplied an effective increase in electrochemical energy storage performance.

___

  • 1. Yousaf M, Shi HTH, Wang Y, Chen Y, Ma Z et al. Novel pliable electrodes for flexible electrochemical energy storage devices: recent progress and challenges. Advanced Energy Materials 2016; 6: 1600490. doi: 10.1002/aenm.201600490
  • 2. Derrien G, Hassoun J, Panero S, Scrosati B. Nanostructured Sn–C composite as an advanced anode material in high-performance lithium-ion batteries. Advanced Materials 2007; 19 (17): 2336-2340. doi: 10.1002/adma.200700748
  • 3. Zhang WM, Hu JS, Guo YG, Zheng SF, Zhong LS et al. Tin-nanoparticles encapsulated in elastic hollow carbon spheres for high-performance anode material in lithium-ion batteries. Advanced Materials 2008; 20: 1160-1165. doi: 10.1002/adma.200701364
  • 4. Larcher D, Beattie S, Morcrette M, Edstrom K, Jumas JC et al. Recent findings and prospects in the field of pure metals as negative electrodes for Li-ion batteries. Journal of Materials Chemistry 2007; 17: 3759-3772. doi: 10.1039/B705421C
  • 5. Köse H, Karaal Ş, Aydın AO, Akbulut H. Structural properties of size-controlled SnO2 nanopowders produced by sol–gel method. Materials Science in Semiconductor Processing 2015; 38: 404-412. doi: 10.1016/j.mssp.2015.03.028
  • 6. Ahn HJ, Choi HC, Park KW, Kim SB, Sung YE. Investigation of the structural and electrochemical properties of size-controlled SnO2 nanoparticles. Journal of Physical Chemistry B 2004; 108 (28): 9815-9820. doi: 10.1021/jp035769n
  • 7. Park MS, Wang GX, Kang YM, Wexler D, Dou SX et al. Preparation and electrochemical properties of SnO2 nanowires for application in lithium-ion batteries. Angewandte Chemie 2007; 119 (5); 764-767. doi: 10.1016/j.matchar.2012.11.011
  • 8. Fan J, Wang T, Yu CZ, Tu B, Jiang ZY et al. Ordered, nanostructured tin-based oxides/carbon composite as the negative-electrode material for Lithium-ion batteries. Advanced Materials 2004; 16 (16): 1432-1436. doi: 10.1002/adma.200400106
  • 9. Zhang C, Peng X, Guo Z, Cai C, Chen Z et al. Carbon-coated SnO2 /graphene nanosheets as highly reversible anode materials for lithium ion batteries. Carbon 2012; 50: 1897-1903. doi: 10.1016/j.carbon.2011.12.040
  • 10. Liu R, Li D, Tian D, Xia G, Wang C et al. Promotional role of B2 O3 in enhancing hollow SnO2 anode performance for Li-ion batteries. Journal of Power Sources 2014; 251: 279-286. doi: 10.1016/j.jpowsour.2013.11.068
  • 11. Lou XW, Chen JS, Chen P, Archer LA. One-Pot Synthesis of Carbon-Coated SnO2 Nanocolloids with Improved Reversible Lithium Storage Properties. Chemistry Materials 2009; 21 (13): 2868-2874. doi: 10.1021/cm900613d
  • 12. Lian P, Zhu X, Liang S, Li Z, Yang W et al. Large reversible capacity of high quality graphene sheets as an anode material for lithium-ion batteries. Electrochimica Acta 2010; 55: 3909-3914. doi: 10.1016/j.electacta.2010.02.025
  • 13. Qin J, He C, Zhao N, Wang Z, Shi C et al. Graphene Networks Anchored with Sn@Graphene as Lithium Ion Battery Anode. ACS Nano 2014; 8 (2): 1728-1738. doi: 10.1021/nn406105n
  • 14. Köse H, Karaal Ş, Aydın AO, Akbulut H. A facile synthesis of zinc oxide/multiwalled carbon nanotube nanocomposite lithium ion battery anodes by sol-gel method. Journal of Power Sources 2015; 295: 235-245. doi: 10.1016/j.jpowsour.2015.06.135
  • 15. Xiang HQ, Fang SB, Jiang YY. Carbons prepared from boron-containing polymers as host materials for lithium insertion. Solid State Ionics 2002; 148: 35-43. doi: 10.1016/S0167-2738(02)00108-X
  • 16. Xia G, Li N, Li D, Liu R, Xiao N et al. Preparation of novel SnO2 –B2 O3 core–shell nanocomposite and their lithium storage ability. Materials Letters 2012; 79: 58-60. doi: 10.1016/j.matlet.2012.03.079
  • 17. Wen L, Qin X, Meng W, Cao N, Song Z. Boron oxide–tin oxide/graphene composite as anode materials for lithium ion batteries. Materials Science and Engineering: B 2016; 213: 63-68. doi: 10.1016/j.mseb.2016.05.004
  • 18. Cetinkaya T, Ozcan S, Uysal M, Guler MO, Akbulut H. Free-standing flexible graphene oxide paper electrode for rechargeable Li-O2 batteries. Journal of Power Sources 2014; 267: 140-147. doi: 10.1016/j.jpowsour.2014.05.081
  • 19. Mukherjee R, Krishnan R, Lu TM, Koratkar N. Nanostructured electrodes for high-power lithium ion batteries. Nano Energy 2012; 1: 518-533. doi: 10.1016/j.nanoen.2012.04.001
  • 20. Ardelean I, Cora S. FT-IR, Raman and UV–VIS spectroscopic studies of copper doped 3Bi 2 O3 .B2 O3 glass matrix. Journal of Materials Science: Materials in Electronics 2008; 19: 584-588. doi: 10.1007/s10854-007-9393-3
  • 21. Ni ZH, Yu T, Lu YH, Wang YY, Feng YP et al. Uniaxial strain on graphene: raman spectroscopy study and band-gap opening. ACS Nano 2008; 2 (11): 2301-2305. doi: 10.1021/nn800459e
  • 22. Ferrari AC. Raman spectroscopy of graphene and graphite: Disorder, electron–phonon coupling, doping and nonadiabatic effects. Solid State Communications 2007; 143: 47-57. doi: 10.1016/j.ssc.2007.03.052
  • 23. Kucinskis G, Bajars G, Kleperis J. Graphene in lithium ion battery cathode materials: A review. Journal of Power Sources 2013; 240: 66-79. doi: 10.1002/er.4223
  • 24. Zak AK, Abd Majid WH, Abrishami ME, Yousefi R. X-ray analysis of ZnO nanoparticles by Williamson-Hall and size-strain plot methods. Solid State Sciences 2011; 13: 251-256. doi: 10.1016/j.solidstatesciences.2010.11.024
  • 25. Lu X, Wu G, Xiong Q, Qin H, Ji Z et al. Laser in-situ synthesis of SnO2 /N-doped graphene nanocomposite with enhanced lithium storage properties based on both alloying and insertion reactions. Applied Surface Science 2017; 422: 645-653. doi: 10.1016/j.apsusc.2017.06.052
  • 26. Tian L, Zhuang Q, Li J, Shi Y, Chen J et al. Mechanism of intercalation and deintercalation of lithium ions in graphene nanosheets. Chinese Science Bulletin 2011; 56 (30): 3204-3212. doi: 10.1007/s11434-011-4609-6
  • 27. Köse H, Dombaycıoğlu Ş, Aydın AO, Akbulut H. Production and characterization of free-standing ZnO/SnO2 / MWCNT ternary nanocomposite Li-ion battery anode. International Journal of Hydrogen Energy 2016; 41: 9924- 9932. doi: 10.1016/j.ijhydene.2016.03.202
  • 28. Köse H, Aydin AO, Akbulut H. Sol–gel preparation and electrochemical characterization of SnO2 /MWCNTs anode materials for Li-ion batteries. Applied Surface Science 2013; 275: 160-167. doi: 10.1016/j.apsusc.2013.01.055
  • 29. Dombaycıoğlu Ş, Köse H, Aydın AO, Akbulut H. The effect of LiBF4 salt concentration in EC-DMC based electrolyte on the stability of nanostructured LiMn 2 O4 cathode. International Journal of Hydrogen Energy 2016; 41: 9893-9900. doi: 10.1016/j.ijhydene.2016.03.165
  • 30. Bruce PG, Scrosati B, Tarascon JM. Nanomaterials for Rechargeable Lithium Batteries. Angewandte Chemie International Edition 2008; 47: 2930-2946. doi: 10.1002/anie.200702505
  • 31. Fan X, Jiang A, Dou P, Ma D, Xu X. Three-dimensional ultrathin Sn/polypyrrole nanosheets network as high performance lithium-ion battery anode. RSC Advances 2014; 4: 52074-52082. doi: 52082. 10.1039/C4RA09114K
  • 32. Pacios M, Martiffn-Fernaffndez I, Villa R, Godignon P, Del Valle M, Bartrolí J, Esplandiu MJ. Carbon nanotubes as suitable electrochemical platforms for metalloprotein sensors and genosensors. In: Naraghi M. (editor). Carbon Nanotubes–Growth and Applications, Rijeka, Croatia: InTech, 2011, pp. 299-324.
  • 33. Jespersen JL, Tønnesen AE, Nørregaard K, Overgaard L, Elefsen F. Capacity measurements of Li-ion batteries using AC impedance spectroscopy. World Electric Vehicle Journal 2009; 3: 127-133. doi: 10.3390/wevj3010127
Turkish Journal of Chemistry-Cover
  • ISSN: 1300-0527
  • Yayın Aralığı: Yılda 6 Sayı
  • Yayıncı: TÜBİTAK
Sayıdaki Diğer Makaleler

Natural diterpenoid alysine A isolated from Teucrium alyssifolium exerts antidiabetic effect via enhanced glucose uptake and suppressed glucose absorption

Anıl YILMAZ, Alaattin ŞEN, Buket AYAR, Gurbet Çelik TURGUT, Özden Özgün ACAR, Gülaçtı TOPÇU

Magnetic solid-phase extraction based on Coriolus versicolor-immobilized $\gamma $-Fe$_{2}$O$_{3}$ nanoparticles for preconcentration and determination of Al(III) in water and food samples

Sadin ÖZDEMİR, Mustafa Serkan YALÇIN, Ersin KILINÇ, Mustafa SOYLAK

Ionic liquid-based graphene oxide-coated fiber for headspace-solid phase microextraction of polycyclic aromatic hydrocarbons in water samples

Melek MERDİVAN, Paniz TASHAKKORI, Pelin ERDEM, Serap Seyhan BOZKURT

Seitkhan AZAT, Zhanar SARTOVA, Kalampyr BEKSEITOVA, Kydyr ASKARULY

Filiz BORAN, Sevil Çetinkaya GÜRER

Fatih TOK, Bedia KAYMAKÇIOĞLU, Recep İLHAN, Sinem YILMAZ, Petek Ballar KIRMIZIBAYRAK, Tuğba Taşkin TOK

Design, synthesis, biological evaluation and molecular docking of novel molecules to PARP-1 enzyme

Petek BALLAR KIRMIZIBAYRAK, Fatih TOK, Sinem YILMAZ, Recep İLHAN, Tuğba TAŞKIN TOK, Bedia KOÇYİĞİT KAYMAKÇIOĞLU

Silylation of epoxidized soybean oil with triethoxysilanes, synthesis and characterization of their polyurethanes

Aynur ÖZŞEKER, Mustafa Yasin ŞEN, Kemal KARADENİZ

Synthesis and characterization of novel mussel-inspired benzoxazines by thiol-benzoxazine chemistry

Mustafa ARSLAN

Hilal KÖSE, Şeyma DOMBAYCIOĞLU, Hatem AKBULUT, Ali Osman AYDIN