Design, synthesis, biological evaluation and molecular docking of novel molecules to PARP-1 enzyme

Design, synthesis, biological evaluation and molecular docking of novel molecules to PARP-1 enzyme

Poly (ADP-ribose) polymerase (PARP) enzyme catalyzes the transfer of ADP-ribose into target proteins.Therefore, PARP is responsible for DNA repair, cell proliferation, and cell death. In this study, potential PARP enzyme inhibitors were designed and synthesized. The synthesized compounds were elucidated by Fourier-transform infrared spectroscopy, 1 H NMR, 13 C NMR, heteronuclear single-quantum correlation, and mass spectrometry, and their purity was checked via thin-layer chromatography, high-performance liquid chromatography, and elemental analysis. A total of 63 newly synthesized compounds were screened in terms of PARP inhibition by cellular PARylation assay in the HeLa cell line. It was found that 19 compounds significantly inhibited the H2 O2 -induced cellular PARylation. The chemosensitizer effect of these compounds in cancer cells treated with doxorubicin (doxo) was investigated. It was found that the combination of potent PARP inhibitors with doxo potentiated a cytotoxic effect, similar to that of olaparib. The results of the molecular docking and absorption, distribution, metabolism, excretion, and toxicity (ADMET) analysis revealed that compound 60 might be classified as a potential PARP inhibitor candidate. Taken together, all of the results suggested that carbohydrazide derivatives could be a promising lead for the treatment for cancer disorders.

___

  • 1. Chen Y, Du H. The promising PARP inhibitors in ovarian cancer therapy: from olaparib to others. Biomedicine and Pharmacotherapy 2018; 99: 552-560. doi: 10.1016/j.biopha.2018.01.094
  • 2. Zhu Q, Wang X, Chu Z, He G, Dong G et al. Design, synthesis and biological evaluation of novel imidazo[4,5- c] pyridinecarboxamide derivatives as PARP-1 inhibitors. Bioorganic Medicinal Chemistry Letters 2013; 23 (7): 1993-1996. doi: 10.1016/j.bmcl.2013.02.032
  • 3. Giansanti V, Donà F, Tillhon M, Scovassi AI. PARP inhibitors: New tools to protect from inflammation. Biochemical Pharmacology 2010; 80 (12): 1869-1877. doi: 10.1016/j.bcp.2010.04.022
  • 4. Wang LX, Zhou XB, Xiao ML, Jiang N, Liu F et al. Synthesis and biological evaluation of substituted 4-(thiophen2-ylmethyl)- 2H-phthalazin-1-ones as potent PARP-1 inhibitors. Bioorganic Medicinal Chemistry Letters 2014; 24 (16): 3739-3743. doi: 10.1016/j.bmcl.2014.07.001
  • 5. Tentori L, Leonetti C, Scarsella M, D’Amati G, Vergati M et al. Systemic administration of GPI 15427, a novel Poly (ADP-ribose) polymerase-1 inhibitor, increases the antitumor activity of temozolomide against intracranial melanoma, glioma, lymphoma. Clinical Cancer Research 2003; 9 (14): 5370-5379. doi: 10.1158/1078-0432.ccr-08- 1223
  • 6. Kommoss S, du Bois A, Heitz F, Harter P, Papsdorf M, Ewald-Riegler N. Poly (ADP-ribosyl)ation polymerases: mechanism and new target of anticancer therapy. Expert Review of Anticancer Therapy 2010; 10 (7): 1125-1136. doi: 10.1586/era.10.53
  • 7. Reinbolt RE, Hays JL. The role of PARP inhibitors in the treatment of gynecologic malignancies. Frontiers in Oncology 2013; 3: 1-11. doi: 10.3389/fonc.2013.00237
  • 8. Kroemer G, Castedo M, Saparbaev M, Vitale I, Michels J. Predictive biomarkers for cancer therapy with PARP inhibitors. Oncogene 2013; 33 (30): 3894-3907. doi: 10.1038/onc.2013.352
  • 9. Plummer R. Poly (ADP-ribose) polymerase (PARP) inhibitors: from bench to bedside. Clinical Oncology 2014; 26 (5): 250-256. doi: 10.1016/j.clon.2014.02.007
  • 10. Curtin NJ. Poly (ADP-ribose) polymerase (PARP) and PARP inhibitors. Drug Discovery Today: Disease Models 2012; 9 (2): 51-58. doi: 10.1016/j.ddmod.2012.01.004
  • 11. Szabó C. Cardioprotective effects of poly (ADP-ribose) polymerase inhibition. Pharmacological Research 2005; 52: 34-43. doi:10.1016/j.phrs.2005.02.017
  • 12. Sodhi RK, Singh N, Jaggi AS. Poly (ADP-ribose) polymerase-1 (PARP-1) and its therapeutic implications. Vascular Pharmacology 2010; 53 (3-4): 77-87. doi:10.1016/j.vph.2010.06.003
  • 13. Graziani G, Battaini F, Zhang J. PARP-1 inhibition to treat cancer, ischemia, inflammation. Pharmacological Research 2005; 52 (1): 1-4. doi: 10.1016/j.phrs.2005.02.007
  • 14. Bürkle A, Diefenbach J, Brabeck C, Beneke S. Ageing and PARP. Pharmacological Research 2005; 52: 93-99. doi: 10.1016/j.phrs.2005.02.008
  • 15. Wang J, Tan H, Sun Q, Ge Z, Wang X et al. Design, synthesis and biological evaluation of pyridazino[3,4,5- de]quinazolin-3(2H)-one as a new class of PARP-1 inhibitors. Bioorganic Medicinal Chemistry Letters 2015; 25 (11): 2340-2344. doi: 10.1016/j.bmcl.2015.04.013
  • 16. Giannini G, Battistuzzi G, Vesci L, Milazzo FM, De Paolis F et al. Novel PARP-1 inhibitors based on a 2-propanoyl-3H-quinazolin-4-one scaffold. Bioorganic Medicinal Chemistry Letters 2014; 24 (2): 462-466. doi: 10.1016/j.bmcl.2013.12.048
  • 17. Oliver FJ, Rodríguez MI, Rodríguez-Vargas JM, de Almodovar MR, Linares JL et al. PARP inhibitors: new partners in the therapy of cancer and inflammatory diseases. Free Radical Biology and Medicine 2009; 47 (1): 13-26. doi:10.1016/j.freeradbiomed.2009.04.008
  • 18. Islam R, Koizumi F, Kodera Y, Inoue K, Okawara T, Masutani M. Design and synthesis of phenolic hydrazide hydrazones as potent poly (ADP-ribose) glycohydrolase (PARG) inhibitors. Bioorganic Medicinal Chemistry Letters 2014; 24 (16): 3802-3806. doi: 10.1016/j.bmcl.2014.06.065
  • 19. Calabrese CR, Almassy R, Barton S, Batey MA, Calvert AH et al. Anticancer chemosensitization and radiosensitization by the novel poly (ADP-ribose) polymerase-1 inhibitor AG14361. Journal of the National Cancer Institute 2004; 96 (1): 56-67. doi: 10.1093/jnci/djh005
  • 20. Penning TD, Rodriguez LE, Hristov B,Palma JP, Jarvis K et al. ABT-888, an orally active poly (ADP-ribose) polymerase inhibitor that potentiates DNA-damaging agents in preclinical tumor models. Clinical Cancer Research 2007; 13 (9): 2728-2737. doi: 10.1158/1078-0432.ccr-06-3039
  • 21. Karakuş S, Tok F, Türk S, Salva E, Tatar G et al. Synthesis, anticancer activity and ADMET studies of N- (5-methyl-1,3,4-thiadiazol-2-yl)-4-[(3-substituted)ureido/thioureido] benzenesulfonamide derivatives. Phosphorus, Sulfur and Silicon and the Related Elements 2018; 193 (8). doi: 10.1080/10426507.2018.1452924
  • 22. Altıntop MD, Sever B, Özdemir A, Kucukoglu K, Onem H et al. Potential inhibitors of human carbonic anhydrase isozymes I and II: design, synthesis and docking studies of new 1,3,4-thiadiazole derivatives. Bioorganic and Medicinal Chemistry 2017; 25 (13): 3547-3554. doi: 10.1016/j.bmc.2017.05.005
  • 23. Tok F, Kocyigit-Kaymakcioglu B, Tabanca N, Estep AS, Gross AD et al. Synthesis and structure–activity relationships of carbohydrazides and 1,3,4-oxadiazole derivatives bearing an imidazolidine moiety against the yellow fever and dengue vector, Aedes aegypti. Pest Management Science 2018; 74 (2): 413-421. doi: 10.1002/ps.4722
  • 24. Kırmızıbayrak PB, Ilhan R, Yılmaz S, Gunal S, Tepedelen BE. A Src/Abl kinase inhibitor, bosutinib, downregulates and inhibits PARP enzyme and sensitizes cells to the DNA damaging agents. Turkish Journal of Biochemistry 2018; 43 (2): 101-109. doi: 10.1515/tjb-2017-0095
  • 25. Dassault Systemes Biovia, Discovery Studio Modeling Environment Release DS. Dassault Systemes, San Diego: 2018.
  • 26. Wu G, Robertson DH, Brooks CL, Vieth M. Detailed analysis of grid-based molecular docking: A case study of CDOCKER - A CHARMm-based MD docking algorithm. Journal of Computational Chemistry 2003; 24 (13): 1549-1562. doi: 10.1002/jcc.10306
  • 27. Gaussian 09, Revision E.01, Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA et al. Gaussian, Inc., Wallingford, CT, USA: 2009.
  • 28. Brooks BR, Bruccoleri RE, Olafson BD, States DJ, Swaminathan S et al CHARMM: A program for macromolecular energy, minimization, and dynamics calculations. Journal of Computational Chemistry 1983; 4 (2): 187-217.
  • 29. Szabo C, Brunyanszki A, Szczesny B, Olah G, Coletta C. Regulation of mitochondrial poly (ADP-ribose) polymerase activation by the -adrenoceptor/cAMP/protein kinase A axis during oxidative stress. Molecular Pharmacology 2014; 86 (4): 450-462. doi: 10.1124/mol.114.094318
  • 30. Drenichev MS, Mikhailov SN. Poly(ADP-ribose): From chemical synthesis to drug design. Bioorganic Medicinal Chemistry Letters 2016; 26 (15): 3395-3403. doi: 10.1016/j.bmcl.2016.06.008
  • 31. Jain PG, Patel BD. Medicinal chemistry approaches of poly ADP-ribose polymerase 1 (PARP1) inhibitors as anticancer agents - a recent update. European Journal of Medicinal Chemistry 2019; 165: 198-215. doi: 10.1016/j.ejmech.2019.01.024
  • 32. Tok F, Koçyiğit-Kaymakçıoğlu B, İlhan R, Ballar-Kırmızıbayrak P, Günal S. Design, synthesis and evaluation of biological activities of some new carbohydrazide and urea derivatives. Turkish Journal of Pharmaceutical Science 2018; 15 (3): 304-308. doi: 10.4274/tjps.64935
  • 33. Damanhouri ZA, ElShal MF, Osman A-MM, Bayoumi HM, Al-Harthi SE. Modulation of doxorubicin cytotoxicity by resveratrol in a human breast cancer cell line. Cancer Cell International 2012; 12 (1): 47. doi: 10.1186/1475- 2867-12-47
  • 34. Park HJ, Bae JS, Kim KM, Moon YJ, Park SH et al. The PARP inhibitor olaparib potentiates the effect of the DNA damaging agent doxorubicin in osteosarcoma. Journal of Experimental and Clinical Cancer Research 2018; 37 (1): 1-15. doi: 10.1186/s13046-018-0772-9
  • 35. Gupta SC, Kannappan R, Reuter S, Kim JH, Aggarwal BB. Chemosensitization of tumors by resveratrol. Annals of the New York Academy of Science 2011; 1215: 150-160. doi: 10.1111/j.1749-6632.2010.05852.x