Synthesis and characterization of novel mussel-inspired benzoxazines by thiol-benzoxazine chemistry

Synthesis and characterization of novel mussel-inspired benzoxazines by thiol-benzoxazine chemistry

A catechol-based benzoxazine copolymer is reported via a new approach using an oxazine-thiol reaction.The main chain benzoxazine precursor was obtained via the classic benzoxazine synthesis methodology using the raw chemicals catechol, formaldehyde, and 4,7,10-trioxa-1,13-tridecanediamine. The countercomponent was synthesized from poly(ethylene glycol) methyl ether via the Fischer esterification reaction. The obtained reactive catechol-based benzoxazine was then reacted in mild conditions with polymeric thiol precursor to obtain a copolymer structure. The precursors and the resulting structure were characterized by thermal and spectral analyses using DSC, TGA, FT-IR, 1 H NMR, and GPC. Film formation was also demonstrated with unreacted oxazine ring units in the copolymer, and the ring opening polymerization temperature was lower than that corresponding to the benzoxazine precursor.

___

  • 1. Ghosh NN, Kiskan B, Yagci Y. Polybenzoxazines - new high performance thermosetting resins: synthesis and properties. Progress in Polymer Science 2007; 32 (11): 1344-1391. doi: 10.1016/j.progpolymsci.2007.07.002
  • 2. Yagci Y, Kiskan B, Ghosh NN. Recent advancement on polybenzoxazine - a newly developed high performance thermoset. Journal of Polymer Science Part A: Polymer Chemistry 2009; 47 (21): 5565-5576. doi: 10.1002/pola.23597
  • 3. Arslan M, Kiskan B, Yagci Y. Post-modification of polybutadienes by photoinduced hydrogen abstraction from benzoxazines and their thermally activated curing. Macromolecules 2016; 49 (14): 5026-5032. doi: 10.1021/acs.macromol.6b01329
  • 4. Tasdelen MA, Kiskan B, Yagci Y. Photoinitiated free radical polymerization using benzoxazines as hydrogen donors. Macromolecular Rapid Communications 2006; 27 (18): 1539-1544. doi: 10.1002/marc.200600424
  • 5. Tasdelen MA, Durmaz H. Thermally curable polyoxanorbornene by ring opening metathesis polymerization. Macromolecular Chemistry and Physics 2011; 212 (19): 2121-2126. doi: 10.1002/macp.201100258
  • 6. Demir KD, Tasdelen MA, Uyar T, Kawaguchi AW, Sudo A et al. Synthesis of polybenzoxazine/clay nanocomposites by in situ thermal ring-opening polymerization using intercalated monomer. Journal of Polymer Science Part A: Polymer Chemistry 2011; 49 (19): 4213-4220. doi: 10.1002/pola.24863
  • 7. Taskin OS, Kiskan B, Yagci Y. Polybenzoxazine precursors as self-healing agents for polysulfones. Macromolecules 2013; 46 (22): 8773-8778. doi: 10.1021/ma4019153
  • 8. Sharma P, Kumar D, Roy PK. Microwave-assisted sustainable synthesis of telechelic poly(ethylene glycol)s with benzoxazine end groups. 2016; 1 (21): 6941-6947. doi: 10.1002/slct.201601226
  • 9. Dizman C, Altinkok C, Tasdelen MA. Synthesis of self-curable polysulfone containing pendant benzoxazine units via CuAAC click chemistry. Designed Monomers and Polymers 2017; 20 (1): 293-299. doi: 10.1080/15685551.2016.1257379
  • 10. Trejo-Machin A, Verge P, Puchot L, Quintana R. Phloretic acid as an alternative to the phenolation of aliphatic hydroxyls for the elaboration of polybenzoxazine. Green Chemistry 2017; 19 (21): 5065-5073. doi: 10.1039/C7GC02348K
  • 11. Brown EA, Rider DA. Pegylated polybenzoxazine networks with increased thermal stability from miscible blends of tosylated poly(ethylene glycol) and a benzoxazine monomer. Macromolecules 2017; 50 (17): 6468-6481. doi: 10.1021/acs.macromol.7b01457
  • 12. Van A, Chiou K, Ishida H. Use of renewable resource vanillin for the preparation of benzoxazine resin and reactive monomeric surfactant containing oxazine ring. Polymer 2014; 55 (6): 1443-1451. doi: 10.1016/j.polymer.2014.01.041
  • 13. Sini NK, Bijwe J, Varma IK. Renewable benzoxazine monomer from vanillin: synthesis, characterization, and studies on curing behavior. Journal of Polymer Science Part A: Polymer Chemistry 2014; 52 (1): 7-11. doi: 10.1002/pola.26981
  • 14. Calo E, Maffezzoli A, Mele G, Martina F, Mazzetto SE et al. Synthesis of a novel cardanol-based benzoxazine monomer and environmentally sustainable production of polymers and bio-composites. Green Chemistry 2007; 9 (7): 754-759. doi: 10.1039/b617180j
  • 15. Dayo AQ, Wang AR, Derradji M, Kiran S, Zegaoui A et al. Copolymerization of mono and difunctional benzoxazine monomers with bio-based phthalonitrile monomer: curing behaviour, thermal, and mechanical properties. Reactive & Functional Polymers 2018; 131: 156-163. doi: 10.1016/j.reactfunctpolym.2018.07.022
  • 16. Dumas L, Bonnaud L, Olivier M, Poorteman M, Dubois P. High performance bio-based benzoxazine networks from resorcinol and hydroquinone. European Polymer Journal 2016; 75: 486-494. doi: 10.1016/j.eurpolymj.2016.01.021
  • 17. Thirukumaran P, Shakila A, Muthusamy S. Synthesis and characterization of novel bio-based benzoxazines from eugenol. RSC Advances 2014; 4 (16): 7959-7966. doi: 10.1039/c3ra46582a
  • 18. He Y, Gao S, Lu Z. A mussel-inspired polybenzoxazine containing catechol groups. Polymer 2018; 158: 53-58. doi: https://doi.org/10.1016/j.polymer.2018.10.046
  • 19. Xu H, Lu Z, Zhang G. Synthesis and properties of thermosetting resin based on urushiol. RSC Advances 2012; 2 (7): 2768-2772. doi: 10.1039/C2RA00829G
  • 20. Wang CF, Sun JQ, Liu XD, Sudo A, Endo T. Synthesis and copolymerization of fully bio-based benzoxazines from guaiacol, furfurylamine and stearylamine. Green Chemistry 2012; 14 (10): 2799-2806. doi: 10.1039/c2gc35796h
  • 21. Lou YJ, Zhao ZX, Chen ZW, Dai ZH, Fu FY et al. Processability improvement of a 4-vinlyguiacol derived benzoxazine using reactive diluents. Polymer 2019; 160: 316-324. doi: 10.1016/j.polymer.2018.11.056
  • 22. Liu YL, Chou C I. High performance benzoxazine monomers and polymers containing furan groups. Journal of Polymer Science Part A: Polymer Chemistry 2005; 43 (21): 5267-5282. doi: 10.1002/pola.21023
  • 23. Kotzebue LRV, De Oliveira JR, Da Silva JB, Mazzetto SE, Ishida H et al. development of fully biobased highperformance bis-benzoxazine under environmentally friendly conditions. ACS Sustainable Chemistry & Engineering 2018; 6 (4): 5485-5494. doi: 10.1021/acssuschemeng.8b00340
  • 24. Oliveira JR, Kotzebue LRV, Mazzetto SE, Lomonaco D. Towards bio-based high-performance polybenzoxazines: agro-wastes as starting materials for BPA-free thermosets via efficient microwave-assisted synthesis. European Polymer Journal 2019; 116: 534-544. doi: https://doi.org/10.1016/j.eurpolymj.2019.04.014
  • 25. Dumas L, Bonnaud L, Olivier M, Poorteman M, Dubois P. Chavicol benzoxazine: ultrahigh Tg biobased thermoset with tunable extended network. European Polymer Journal 2016; 81: 337-346. doi: 10.1016/j.eurpolymj.2016.06.018
  • 26. Arslan M. Synthesis and characterization of novel bio-based benzoxazines from gallic acid with latent catalytic characteristics. Reactive and Functional Polymers 2019; 139. doi: 10.1016/j.reactfunctpolym.2019.03.011
  • 27. Gorodisher I, Devoe RJ, Webb RJ. Catalytic opening of lateral benzoxazine rings by thiols. In: Ishida H, Agag T, editors. Handbook of Benzoxazine Resins. Amsterdam, Netherlands: Elsevier, 2011, pp. 211-234.
  • 28. Semerci E, Kiskan B, Yagci Y. Thiol reactive polybenzoxazine precursors: a novel route to functional polymers by thiol-oxazine chemistry. European Polymer Journal 2015; 69: 636-641. doi: 10.1016/j.eurpolymj.2015.02.030
  • 29. Urbaniak T, Soto M, Liebeke M, Koschek K. Insight into the mechanism of reversible ring-opening of 1,3- benzoxazine with thiols. The Journal of Organic Chemistry 2017; 82 (8): 4050-4055. doi: 10.1021/acs.joc.6b02727
  • 30. Oie H, Mori A, Sudo A, Endo T. Polyaddition of bifunctional 1,3-benzoxazine and 2-methylresorcinol. Journal of Polymer Science Part A: Polymer Chemistry 2013; 51 (18): 3867-3872. doi: 10.1002/pola.26784
  • 31. Beyazkilic Z, Kahveci MU, Aydogan B, Kiskan B, Yagci Y. Synthesis of polybenzoxazine precursors using thiols: simultaneous thiol-ene and ring-opening reactions. Journal of Polymer Science Part A: Polymer Chemistry 2012; 50 (19): 4029-4036. doi: 10.1002/pola.26202
  • 32. Bektas S, Kiskan B, Orakdogen N, Yagci Y. Synthesis and properties of organo-gels by thiol-benzoxazine chemistry. Polymer 2015; 75: 44-50. doi: 10.1016/j.polymer.2015.08.026
  • 33. Musa A, Kiskan B, Yagci Y. Thiol-benzoxazine chemistry as a novel Thiol-X reaction for the synthesis of block copolymers. Polymer 2014; 55 (22): 5550-5556. doi: 10.1016/j.polymer.2014.06.076
  • 34. Lowe AB. Thiol-yne ’click’/coupling chemistry and recent applications in polymer and materials synthesis and modification. Polymer 2014; 55 (22): 5517-5549. doi: 10.1016/j.polymer.2014.08.015
  • 35. Ye Q, Zhou F, Liu WM. Bioinspired catecholic chemistry for surface modification. Chemical Society Reviews 2011; 40 (7): 4244-4258. doi: 10.1039/c1cs15026j
  • 36. Sedo J, Saiz-Poseu J, Busque F, Ruiz-Molina D. Catechol-based biomimetic functional materials. Advanced Materials 2013; 25 (5): 653-701. doi: 10.1002/adma.201202343
  • 37. Higginson CJ, Malollari KG, Xu Y, Kelleghan AV, Ricapito NG et al. Bioinspired design provides high-strength benzoxazine structural adhesives. Angewandte Chemie International Edition 2019; 58 (35): 12271-12279. doi: 10.1002/anie.201906008
  • 38. Li L, Li Y, Luo XF, Deng JP, Yang WT. Helical poly(N-propargylamide)s with functional catechol groups: synthesis and adsorption of metal ions in aqueous solution. Reactive & Functional Polymers 2010; 70 (12): 938-943. doi: 10.1016/j.reactfunctpolym.2010.09.006
  • 39. Wang J, Liu CS, Lu X, Yin M. Co-polypeptides of 3,4-dihydroxyphenylalanine and L-lysine to mimic marine adhesive protein. Biomaterials 2007; 28 (23): 3456-3468. doi: 10.1016/j.biomaterials.2007.04.009
  • 40. Lee BP, Chao CY, Nunalee FN, Motan E, Shull KR et al. Rapid gel formation and adhesion in photocurable and biodegradable block copolymers with high DOPA content. Macromolecules 2006; 39 (5): 1740-1748. doi: 10.1021/ma0518959
  • 41. Yuan SJ, Wan D, Liang B, Pehkonen SO, Ting YP et al. Lysozyme-coupled poly(poly(ethylene glycol) methacrylate)- stainless steel hybrids and their antifouling and antibacterial surfaces. Langmuir 2011; 27 (6): 2761-2774. doi: 10.1021/la104442f
  • 42. Wang JJ, Tahir MN, Kappl M, Tremel W, Metz N et al. Influence of binding-site density in wet bioadhesion. Advanced Materials 2008; 20 (20): 3872-3876. doi: 10.1002/adma.200801140
  • 43. Shao H, Stewart RJ. Biomimetic underwater adhesives with environmentally triggered setting mechanisms. Advanced Materials 2010; 22 (6): 729-733. doi: 10.1002/adma.200902380
  • 44. White JD, Wilker JJ. Underwater bonding with charged polymer mimics of marine mussel adhesive proteins. Macromolecules 2011; 44 (13): 5085-5088. doi: 10.1021/ma201044x
  • 45. Chung HY, Glass P, Pothen JM, Sitti M, Washburn NR. Enhanced adhesion of dopamine methacrylamide elastomers via viscoelasticity tuning. Biomacromolecules 2011; 12 (2): 342-347. doi: 10.1021/bm101076e
  • 46. Ryu JH, Lee Y, Kong WH, Kim TG, Park TG et al. Catechol-functionalized chitosan/pluronic hydrogels for tissue adhesives and hemostatic materials. Biomacromolecules 2011; 12 (7): 2653-2659. doi: 10.1021/bm200464x
  • 47. Adkins CT, Dobish JN, Brown CS, Mayrsohn B, Hamilton SK et al. High relaxivity MRI imaging reagents from bimodal star polymers. Polymer Chemistry 2012; 3 (2): 390-398. doi: 10.1039/c1py00474c
  • 48. Saxer S, Portmann C, Tosatti S, Gademann K, Zurcher S et al. Surface assembly of catechol-functionalized poly (l-lysine)-graft-poly (ethylene glycol) copolymer on titanium exploiting combined electrostatically driven selforganization and biomimetic strong adhesion. Macromolecules 2009; 43 (2): 1050-1060. doi: 10.1021/ma9020664
  • 49. Han H, Wu JF, Avery CW, Mizutani M, Jiang XM et al. Immobilization of amphiphilic polycations by catechol functionality for antimicrobial coatings. Langmuir 2011; 27 (7): 4010-4019. doi: 10.1021/la1046904