Process optimization and mechanism study of acid red G degradation by electro-FentonFeox process as an in situ generation of $H_2O_2$

Process optimization and mechanism study of acid red G degradation by electro-FentonFeox process as an in situ generation of $H_2O_2$

Dye-contaminated wastewaters are industrial wastewaters that are difficult to treat using traditional biochemical and physicochemical methods. In the present work, the acid red G was removed as a model pollutant by the electro-Fenton process for the first time. The anode and cathode used by the electro-Fenton process were iron plate and graphite felt, respectively. It was concluded that under the optimal conditions of current density = 20 mA $cm^{–2}$, pH = 3 and initial $Na_2SO_4$ concentration = 0.2 M, the removal rate of acid red G (ARG) with an initial concentration of 300 mg L–1 could reach 94.05% after 80 min of electrolysis. This reveals that the electroFenton-Feox process used in this work has an excellent removal efficiency on acid red G. The required reagents $(Fe^{2+} and H_2O_2 )$ were generated by the electrode reaction, while the optimal generation conditions and mechanism of •OH, $H_2O_2$, and $Fe^{2+}$ were investigated. By testing •OH, $H_2O_2$, and $(Fe^{2+} agents at different pH and current densities, it was revealed that the electro-Fenton reaction was most efficient when the current density was 20 mA cm–2, and the pH was 3. Moreover, the removal rate of ARG is consistent with first-order reaction kinetics.

___

  • 1. Salazar R, Ureta-Zañartu M. Mineralization of triadimefon fungicide in water by electro-Fenton and photo electro-Fenton. Water, Air, & Soil Pollution 2012; 223 (7): 4199-4207. doi: 10.1007/s11270-012-1184-7
  • 2. Bello MM, Raman AAA, Asghar A. A review on approaches for addressing the limitations of Fenton oxidation for recalcitrant wastewater treatment. Process Safety and Environmental Protection 2019; 126: 119-140. doi: 10.1016/j.psep.2019.03.028
  • 3. Dang X, Chen H, Shan Z, Zhen W, Yang M. The oxidation of potato starch by electro-Fenton system in the presence of Fe (II) ions. International Journal of Biological Macromolecules 2019; 121: 113-119. doi: 10.1016/j.ijbiomac.2018.10.012
  • 4. Cao Z, Zheng X, Cao H, Zhao H, Sun Z et al. Efficient reuse of anode scrap from lithium-ion batteries as cathode for pollutant degradation in electro-Fenton process: Role of different recovery processes. Chemical Engineering Journal 2018; 337: 256-264. doi: 10.1016/j. cej.2017.12.104
  • 5. Arellano M, Oturan N, Pazos M, Sanromán MÁ, Oturan MA. Coupling electro-Fenton process to a biological treatment, a new methodology for the removal of ionic liquids. Separation and Purification Technology 2020; 233: 115990. doi: 10.1016/j.seppur.2019.115990
  • 6. Casado J. Towards industrial implementation of Electro-Fenton and derived technologies for wastewater treatment: A review. Journal of Environmental Chemical Engineering 2019; 7 (1): 102823. doi: 10.1016/j.jece.2018.102823
  • 7. Chen S, Tang L, Feng H, Zhou Y, Zeng G et al. Carbon felt cathodes for electro-Fenton process to remove tetracycline via synergistic adsorption and degradation. Science of the Total Environment 2019; 670: 921-931. doi: 10.1016/j.scitotenv.2019.03.086
  • 8. Chen Y, Chen H, Li J, Xiao L. Rapid and efficient activated sludge treatment by electro-Fenton oxidation. Water Research 2019; 152: 181- 190. doi: 10.1016/j.watres.2018.12.035
  • 9. Choe YJ, Kim J, Ji YB, Kim SH. An electro-Fenton system with magnetite coated stainless steel mesh as cathode. Catalysis Today 2019. doi: 10.1016/j.cattod.2019.06.062
  • 10. Colades JI, Huang C-P, Retumban JD, Garcia-Segura S, de Luna MDG. Electrochemically-driven dosing of iron (II) for autonomous electro-Fenton processes with in situ generation of $H_2O_2$. Journal of Electroanalytical Chemistry 2020; 856: 113639. doi: 10.1016/j. jelechem.2019.113639
  • 11. Cao P, Quan X, Zhao K, Chen S, Yu H et al. Selective electrochemical $H_2O_2$ generation and activation on a bifunctional catalyst for heterogeneous electro-Fenton catalysis. Journal of hazardous materials2020; 382: 121102. doi: 10.1016/j.jhazmat.2019.121102
  • 12. Díez A, Pazos M, Sanromán M. Bifunctional floating catalyst for enhancing the synergistic effect of LED-photolysis and electro-Fenton process. Separation and Purification Technology 2020; 230: 115880. doi: 10.1016/j.seppur.2019.115880
  • 13. Gao Y, Zhu W, Wang C, Zhao X, Shu M et al. Enhancement of oxygen reduction on a newly fabricated cathode and its application in the electro-Fenton process. Electrochimica Acta 2020; 330: 135206. doi: 10.1016/j.electacta.2019.135206
  • 14. Kubo D, Kawase Y. Hydroxyl radical generation in electro-Fenton process with in situ electro-chemical production of Fenton reagents by gas-diffusion-electrode cathode and sacrificial iron anode. Journal of Cleaner Production 2018; 203: 685-695. doi: 10.1016/j. jclepro.2018.08.231
  • 15. Zhang G, Gong J, Zou X, He F, Zhang Q et al. Photocatalytic degradation of azo dye acid red G by $KNb_3O_8$ and the role of potassium in the photocatalysis. Chemical Engineering Journal2006; 123 (1-2): 59-64. doi: 10.1016/j.cej.2006.06.021
  • 16. Shoorangiz M, Nikoo MR, Salari M, Rakhshandehroo GR, Sadegh M. Optimized electro-Fenton process with sacrificial stainless steel anode for degradation/mineralization of ciprofloxacin. Process Safety and Environmental Protection 2019; 132: 340-350. doi: 10.1016/j. psep.2019.10.011
  • 17. Contreras MBC, Fourcade F, Assadi A, Amrane A, Fernandez-Morales FJ. Electro Fenton removal of clopyralid in soil washing effluents. Chemosphere 2019; 237: 124447. doi: 10.1016/j.chemosphere.2019.124447
  • 18. Sellers R M. Spectrophotometric determination of hydrogen peroxide using potassium titanium (IV) oxalate. Analyst 1980, 105. doi: 10.1039/an9800500950
  • 19. Jean-M F, Xochitl D-B, Mika S. Towards reliable quantification of hydroxyl radicals in the Fenton reaction using chemical probes. RSC Advances 2018; 8 (10): 5321-5330. doi: 10.1039/c7ra13209c
  • 20. Kourdali S, Badis A, Boucherit A, Boudjema K, Saiba A. Electrochemical disinfection of bacterial contamination: effectiveness and modeling study of E. coli inactivation by electro-Fenton, electro-peroxi-coagulation and electrocoagulation. Journal of Environmental Management 2018; 226: 106-119. doi: 10.1016/j.jenvman.2018.08.038
  • 21. Zou X, Wan Z, Wan C, Zhang G, Pan X et al. Novel $Ag/AgCl/K_6 Nb_{10.8}O_{30}$ photocatalyst and its enhanced visible light photocatalytic activities for the degradation of microcystin-LR and acid red G. Journal of Molecular Catalysis A: Chemical 2016; 411: 364-371. doi: 10.1016/j.molcata.2015.11.009
  • 22. Wang T, Zhao P, Lu N, Chen H, Zhang C et al. Facile fabrication of $Fe_3O_4/MIL-101(Cr)$ for effective removal of acid red 1 and orange G from aqueous solution. Chemical Engineering Journal 2016; 295: 403-413. doi: 10.1016/j.cej.2016.03.016
  • 23. Feng J, Li J, Lv W, Xu H, Yang H et al. Synthesis of polypyrrole nano-fibers with hierarchical structure. Synthetic Metals 2014; 191: 66-73. doi: 10.1016/j.synthmet.2014.02.013
  • 24. Tong D, Liu M, Li L, Lin C, Yu W et al. Transformation of alunite residuals into layered double hydroxides and oxides for adsorption of acid red G dye. Applied Clay Science 2012; 70: 1-7. doi: 10.1016/j.clay.2012.08.001
  • 25. Lei J, Xu Z, Xu H, Qiao D, Liao Z et al. Pulsed electrochemical oxidation of acid Red G and crystal violet by PbO2 anode. Journal of Environmental Chemical Engineering 2020; 8: 103773. doi: 10.1016/j.jece.2020.103773
  • 26. Garcia-Segura S, Keller J, Brillas E, Radjenovic J. Removal of organic contaminants from secondary effluent by anodic oxidation with a boron-doped diamond anode as tertiary treatment. Journal of Hazardous Materials 2015; 283: 551-557. doi: 10.1016/j.jhazmat.2014.10.003
  • 27. Zhao K, Quan X, Chen S, Yu H, Zhao J. Preparation of fluorinated activated carbon for electro-Fenton treatment of organic pollutants in coking wastewater: The influences of oxygen-containing groups. Separation and Purification Technology 2019; 224: 534-542. doi: 10.1016/j.seppur.2019.05.058
  • 28. Zou R, Angelidaki I, Jin B, Zhang Y. Feasibility and applicability of the scaling-up of bio-electro-Fenton system for textile wastewater treatment. Environment International 2020; 134: 105352. doi: 10.1016/j.envint.2019.105352
  • 29. Changotra R, Rajput H, Dhir A. Treatment of real pharmaceutical wastewater using combined approach of Fenton applications and aerobic biological treatment. Journal of Photochemistry and Photobiology A: Chemistry2019; 376: 175-184. doi: 10.1016/j.jphotochem.2019.02.029
  • 30. Acisli O, Khataee A, Soltani RDC, Karaca S. Ultrasound-assisted Fenton process using siderite nanoparticles prepared via planetary ball milling for removal of reactive yellow 81 in aqueous phase. Ultrasonics Sonochemistry 2017; 35: 210-218. doi: 10.1016/j. ultsonch.2016.09.020
  • 31. Zhou M, Yu Q, Lei L, Barton G. Electro-Fenton method for the removal of methyl red in an efficient electrochemical system. Separation and Purification Technology 2007; 57 (2): 380-387. doi: 10.1016/j.seppur.2007.04.021
  • 32. Wang Y, Chu W. Photo-assisted degradation of 2, 4, 5-trichlorophenol by Electro-Fe (II)/Oxone® process using a sacrificial iron anode: Performance optimization and reaction mechanism. Chemical Engineering Journal 2013; 215: 643-650. doi: 10.1016/j.cej.2012.11.042
  • 33. Pignatello J J , Liu D , Huston P . Evidence for an additional oxidant in the photoassisted fenton reaction. Environmental Science & Technology 1999; 33(11): 1832-1839. doi: 10.1021/es980969b
  • 34. Shemer H, Kunukcu YK, Linden KG. Degradation of the pharmaceutical metronidazole via UV, Fenton and photo-Fenton processes. Chemosphere2006; 63 (2): 269-276. doi: 10.1016/j.chemosphere.2005.07.029
  • 35. Panizza M, Cerisola G. Electro-Fenton degradation of synthetic dyes. Water Research 2009; 43 (2): 339-344. doi: 10.1016/j.watres.2008.10.028
  • 36. Das R, Bhaumik M, Giri S, Maity A. Sonocatalytic rapid degradation of congo red dye from aqueous solution using magnetic $Fe_0/$polyaniline nanofibers. Ultrasonics Sonochemistry 2017; 37, 600-613. doi: 10.1016/j.ultsonch.2017.02.022
  • 37. Sennaoui A, Alahiane S, Sakr F, Tamimi M, Hamdani M et al. Comparative degradation of benzoic acid and its hydroxylated derivatives by electro-Fenton technology using BDD/carbon-felt cells. Journal of Environmental Chemical Engineering 2019; 7 (2): 103033. doi: 10.1016/j.jece.2019.103033
  • 38. Sopaj F, Oturan N, Pinson J, Podvorica FI, Oturan MA. Effect of cathode material on electro-Fenton process efficiency for electrocatalytic mineralization of the antibiotic sulfamethazine. Chemical Engineering Journal 2020; 384: 123249. doi: 10.1016/j.cej.2019.123249
  • 39. Yang H, Zhou M, Yang W, Ren G, Ma L. Rolling-made gas diffusion electrode with carbon nanotube for electro-Fenton degradation of acetylsalicylic acid. Chemosphere 2018; 206: 439-446. doi: 10.1016/j.chemosphere.2018.05.027
  • 40. Stupar SL, Grgur BN, Radišić MM, Onjia AE, Mijin DŽ. Oxidative degradation of acid blue 111 by electro-assisted fenton process. Journal of Water Process Engineering 2020; 36, 101394. doi: 10.1016/j.jwpe.2020.101394
  • 41. Khataee A, Gholami P, Sheydaei MJ. Heterogeneous Fenton process by natural pyrite for removal of a textile dye from water: Effect of parameters and intermediate identification. Journal of the Taiwan Institute of Chemical Engineers 2016; 58, 366-373. doi: 10.1016/j. jtice.2015.06.015
  • 42. Solano A M S, Garcia-Segura S, Martínez-Huitle C A, Brillas E. Degradation of acidic aqueous solutions of the diazo dye Congo Red by photo-assisted electrochemical processes based on Fenton’s reaction chemistry. Applied Catalysis B Environmental 2015; 168-169: 559- 571. doi:10.1016/j.apcatb.2015.01.019
  • 43. Murrieta MF, Sires I, Brillas E, Nava JL. (2020). Mineralization of Acid Red 1 azo dye by solar photoelectro-Fenton-like process using electrogenerated HClO and photoregenerated Fe(II). Chemosphere 2020; 246, 125697. doi: 10.1016/j.chemosphere.2019.125697
  • 44. Emami F, Tehrani-Bagha A. R, Gharanjig K, Menger F M. Kinetic study of the factors controlling fenton-promoted destruction of a nonbiodegradable dye. Desalination 2010; 257(1-3), 124-128. doi: 10.1016/j.desal.2010.02.035
Turkish Journal of Chemistry-Cover
  • ISSN: 1300-0527
  • Yayın Aralığı: Yılda 6 Sayı
  • Yayıncı: TÜBİTAK
Sayıdaki Diğer Makaleler

Synthesis of nonperipherally tetra-[5-(diethylamino)-2-formylphenoxy] substituted metallophthalocyanines and their electrochemistry

Zekeriya BIYIKLIOĞLU, Yasemin ÜNVER, Dilek ÜNLÜER, Turgut KELEŞ

Mehmet Emin SEKER, Emriye AY, Ayça AKTAŞ KARAÇELİK, Rena HÜSEYİNOĞLU, Derya EFE

Synthesis of 7,12-bis(4-(di(1H-pyrrol-2-yl)methyl)phenyl)benzo[k]fluoranthene from a new dialdehyde as a novel fluorometric bis-Dipyrromethane derivative

Salar HEMMATI, Faride RANJBARI, Mohammad Reza RASHIDI

Validation of HPLC method for the determination of chemical and radiochemical purity of a $^{68}Ga-labelled EuK-Sub-kf-(3-iodo-y-) DOTAGA$

Ayşe UĞUR, Şükrü Gökhan ELÇİ, Doğangün YÜKSEL

Size-controllable carbon spheres doped Ni (II) for enhancing the catalytic oxidation of methanol

Yifen HU, Pengyu GAO, Yingying GU, Chuan ZHANG, Lizhen HUANG, Yunting HU, Yarui AN, Zhen XU

Hailong SUN, Yingwu YAO, Feng WEİ, Qiang ZHAO, Baichen LİU, Liman ZHANG

Sensitive determination of hydrazine using poly(phenolphthalein), Au nanoparticles and multiwalled carbon nanotubes modified glassy carbon electrode

Zekerya DURSUN, Müge HATİP, Süleyman KOÇAK

Spectrophotometric analysis of stability of gold nanoparticles during catalytic reduction of 4-nitrophenol

Farhat SAIRA, Humaira RAZZAQ, Samia SALEEMI, Rumana QURESHI

Mehmet Atilla TASDELEN, Cagatay ALTİNKOK

Synthesis and characterization of novel 4-benzyloxyphenyl 4-[4-(n-dodecyloxy) benzoyloxy]benzoate liquid crystal

Hale OCAK, Belkız BİLGİN ERAN, Emine BALKANLI, Fatih ÇAKAR, Özlem CANKURTARAN