Preparation of self-propelled Cu-Pt micromotors and their application in miRNA monitoring

Preparation of self-propelled Cu-Pt micromotors and their application in miRNA monitoring

Self-propelled catalytic micromotors offer considerable promise in terms of many applications. Catalyticmicromotors are strongly influenced by the presence and concentration of specific ions and chemicals in the environment,making them useful as sensors and actuators. In this work, copper (Cu)-platinum (Pt) micromotors were fabricatedby using the magnetron sputtering method for the first time in the literature and their applications based on thedetection of miRNA-21 were evaluated. We analyzed the dependence of the mobility of Cu-Pt micromotors usingdifferent concentrations of hydrogen peroxide (H2 O2). The presence of surfactants in the environment is also importantfor the movement of the micromotors. Thus, we studied the effect of three different surfactants: anionic as sodiumdodecyl sulfate (SDS), cationic as cetyltrimethylammonium bromide (CTAB), and nonionic as Triton X-100. Cu-Ptmicromotor motion was observed even at very low concentrations of surfactant (0.01%) and hydrogen peroxide (0.25%).miRNAs have been regarded as biomarker candidates in early diagnosis. Our sensing strategy relied on dye-labeledsingle-stranded DNA immobilization onto Cu-Pt micromotors that recognize the target miRNA-21. The changes in thefluorescence intensity as well as the changes in the speed of micromotors were examined before and after hybridization.

___

  • 1. Singh, V.V.; Wang, J. Nanoscale 2015, 7, 19377-19389.
  • 2. Li, L.; Wang, J.; Li, T.; Song, W.; Zhang, G. Soft Matter 2014, 10, 7511-7518.
  • 3. Wang, E. C.; Wang, A. Z. Integr. Biol. 2014, 6, 9-26.
  • 4. Guix, M.; Meyer, A. K.; Koch, B.; Schmidt, O. G. Sci. Rep.-UK 2016, 6, 21701.
  • 5. Ma, X.; Hahn, K.; Sanchez, S. J. Am. Chem. Soc. 2015, 137, 4976-4979.
  • 6. Ke, H.; Ye, S.; Carroll, R. L.; Showalter, K. J. Phys. Chem. A 2010, 114, 5462-5467.
  • 7. Gibbs, J.; Zhao, Y. Front. Mater. Sci. 2011, 5, 25-39.
  • 8. Dong, R.; Li, J.; Rozen, I.; Ezhilan, B.; Xu, T.; Christianson, C.; Gao, W.; Saintillan, D.; Ren, B.; Wang, J. Sci. Rep.-UK 2015, 5, 13226.
  • 9. Men, Y.; Peng, F.; Wilson, D. A. Science Letters Journal 2016, 5, 219.
  • 10. Li, J.; Rozen, I.; Wang, J. ACS Nano 2016, 10, 5619-5634.
  • 11. Katuri, J.; Ma, X.; Stanton, M. M.; Sánchez, S. Accounts Chem. Res. 2017, 50, 2-11.
  • 12. Magdanz, V.; Guix, M.; Schmidt, O. G. Robotics and Biomimetics 2014, 1, 11.
  • 13. Jurado-Sánchez, B.; Escarpa, A. TrAC-Trend. Anal. Chem. 2016, 84, 48-59.
  • 14. Sanchez, S.; Ananth, A. N.; Fomin, V. M.; Viehrig, M.; Schmidt, O. G. J. Am. Chem. Soc. 2011, 133, 14860-14863.
  • 15. García, M.; Orozco, J.; Guix, M.; Gao, W.; Sattayasamitsathit, S.; Escarpa, A.; Merkoçi, A.; Wang, J. Nanoscale 2013, 5, 1325-1331.
  • 16. Teo, W. Z.; Wang, H.; Pumera, M. Chem. Commun. 2016, 52, 4333-4336.
  • 17. Zhao, G.; Sanchez, S.; Schmidt, O. G.; Pumera, M. Nanoscale 2013, 5, 2909.
  • 18. Gibbs, J. G.; Zhao, Y. P. Appl. Phys. Lett. 2009, 94, 163104.
  • 19. Wang, H.; Zhao, G.; Pumera, M. J. Phys. Chem. C 2014, 118, 5268-5274.
  • 20. Simmchen, J.; Magdanz, V;. Sanchez, S.; Chokmaviroj, S.; Ruiz-Molina, D.; Baeza, A.; Schmidt, O. G. RSC Adv. 2014, 4, 20334-20340.
  • 21. Ávila, B. E. F. C. A. D.; Martín, A.; Soto, F.; Lopez-Ramirez, M. A.; Campuzano, S.; Vásquez-Machado, G. M.; Gao, W.; Zhang, L.; Wang, J. ACS Nano 2015, 9, 6756-6764.
  • 22. Gao, W.; D’Agostino, M.; Garcia-Gradilla, V.; Orozco, Wang, J. Small 2013, 9, 467-471.
  • 23. Li, Y.; Mou, F.; Chen, C.; You, M.; Yin, Y.; Xu, L.; Guan, J. RSC Adv. 2016, 6, 10697-10703.
  • 24. Jurado-Sánchez, B.; Sattayasamitsathit, S.; Gao, W.; Santos, L.; Fedorak, Y.; Singh, V. V.; Orozco, J.; Galarnyk, M.; Wang, J. Small 2015, 11, 4, 499-506.
  • 25. Wang, J. Nanomachines: Fundamentals and Applications; Wiley-VCH: Weinheim, Germany, 2013.
  • 26. Valadares, L. F.; Tao, Y.; Zacharia, N. S.; Kitaev, V.; Galembeck, F.; Kapral, R.; Ozin, G. A. Small 2010, 6, 565-572.
  • 27. Banerjee, S. S.; Jalota-Badhwar, A.; Zope, K. R.; Todkar, K. J.; Mascarenhas, R. R.; Chate, G. P.; Khutale, G. V.; Bharde, A.; Calderon, M.; Khandare, J. J. Nanoscale 2015, 7, 8684-8688.
  • 28. McCreery, R. L. In Electroanalytical Chemistry; Bard, A. J., Ed. Marcel Dekker: New York, NY, USA, 2007, pp. 221-374.
  • 29. Marras, S. A. E. In Fluorescent Energy Transfer Nucleic Acid Probes; Didenko, V., Ed. Humana Press: New York, NY, USA, 2006, pp. 3-16.
  • 30. Oudeng, G.; Au, M.; Shi, J.; Wen, C.; Yang, M. ACS Appl. Mater. Inter. 2018, 10, 350-360.
  • 31. Cui, L.; Lin, X.; Lin, N.; Song, Y.; Zhu, Z.; Chen, X.; Yang, C. Chem. Commun. 2012, 48, 194-196.
  • 32. Wei, T.; Du, D.; Wang, Z.; Zhang, W.; Lin, Y. Biosens. Bioelectron. 2017, 94, 56-62.
  • 33. de Ávila, B.E. F.; Angell, C.; Soto, F.; Lopez-Ramirez, M. A.; Báez, D. F.; Xie, S.; Wang, J.; Chen, Y. ACS Nano 2016, 10, 4997-5005.
  • Supplemental information
  • SI Video 1. Cu-Pt micromotor movement in the presence of nonionic surfactant Triton-X 100 (0.01%) with H2O2 (0.25%) fuel: http://
  • SI Video 2. Cu-Pt micromotor movement in the presence of anionic surfactant SDS (0.01%) with H2O2 (0.25%) fuel: http://
  • SI Video 3. FAM-ssDNA/Cu-Pt micromotors speed and fluorescence intensity after 5, 15, and 30 min of target (100 nM) hybridization and before target incubation: http://
Turkish Journal of Chemistry-Cover
  • ISSN: 1300-0527
  • Yayın Aralığı: Yılda 6 Sayı
  • Yayıncı: TÜBİTAK