Synergetic effect of Mn, Ce, Ba, and B modification and moderate desilication of nanostructured HZSM-5 catalyst on conversion of methanol to propylene

Synergetic effect of Mn, Ce, Ba, and B modification and moderate desilication of nanostructured HZSM-5 catalyst on conversion of methanol to propylene

Modified mesoporous HZSM-5 catalysts were prepared by controlled desilication using a mixture of NaOHand TPAOH (tetrapropylammonium hydroxide) and impregnation of metals (Mn, Ce, and Ba) and metalloid B. Thecatalytic performances of all prepared catalysts for methanol to propylene (MTP) reaction were evaluated in a fixed bedreactor under atmospheric pressure at 480 °C. The parent and modified catalysts were characterized by XRD, ICP-OES,FE-SEM, NH3 -TPD, FT-IR, BET, and TGA techniques. The catalyst loaded with 2 wt.% manganese on desilicatedHZSM-5 demonstrated the best catalytic performance in terms of the highest selectivity of C =2 to C =4 olefins (about93%) and about 52% selectivity of propylene at near 99% methanol conversion in the MTP reaction for a long operation(264 h). The improved catalytic performance can be attributed to the high surface area and the formation of mesoporeson the zeolite crystals in conjunction with the appropriate acidity.

___

  • 1. Jiao, Y.; Jiang, C.; Yang, Z.; Liu, J.; Zhang, J. Microporous Mesoporous Mater. 2013, 181, 201-207.
  • 2. Xiang, D.; Qian, Y.; Man, Y.; Yang, S. Appl. Energy 2014, 113, 639-647.
  • 3. Baliban, R. C.; Elia, J. A.; Weekman, V.; Floudas, C. A. Comput. Chem. Eng. 2012, 47, 29-56.
  • 4. Losch, P.; Boltz, M.; Louis, B.; Chavan, S.; Olsbye, U. Comptes Rendus Chim. 2015, 18, 330-335.
  • 5. Yaripour, F.; Shariatinia, Z.; Sahebdelfar, S.; Irandoukht, A. J. Nat. Gas Sci. Eng. 2015, 22, 260-269.
  • 6. Plotkin, J. S. Catal. Today 2005, 106, 10-14.
  • 7. Tian, P.; Wei, Y.; Ye, M.; Liu, Z. ACS Catal. 2015, 5, 1922-1938.
  • 8. Liu, J.; Zhang, C.; Shen, Z.; Hua, W.; Tang, Y.; Shen, W.; Yue, Y.; Xu, H. Catal. Commun. 2009, 10, 1506-1509.
  • 9. Wu, W.; Guo, W.; Xiao, W.; Luo, M. Chem. Eng. Sci. 2011, 66, 4722-4732.
  • 10. Ahmadpour, J.; Taghizadeh, M. Comptes Rendus Chim. 2015, 18, 834-847.
  • 11. Mei, C.; Wen, P.; Liu, Z.; Wang, Y.; Yang, W.; Xie, Z.; Hua, W.; Gao, Z. J. Catal. 2008, 258, 243-249.
  • 12. Sun, C.; Du, J.; Liu, J.; Yang, Y.; Ren, N.; Shen, W.; Xu, H.; Tang, Y. Chem. Commun. 2010, 46, 2671-2673.
  • 13. Ahmadpour, J.; Taghizadeh, M. J. Nat. Gas Sci. Eng. 2015, 23, 184-194.
  • 14. Schmidt, I.; Boisen, A.; Gustavsson, E.; Ståhl, K.; Pehrson, S.; Dahl, S.; Carlsson, A.; Jacobsen, C. J. H. Chem. Mater. 2001, 13, 4416-4418.
  • 15. Meng, F. L.; Wang, Z. L.; Zhong, H. X.; Wang, J.; Yan, J. M.; Zhang, X. B. Adv. Mater. 2016, 28, 7948-7955.
  • 16. Möller, K.; Bein, T. Chem. Soc. Rev. 2013, 42, 3689-3707.
  • 17. Triantafillidis, C. S.; Vlessidis, A. G.; Nalbandian, L.; Evmiridis, N. P. Microporous Mesoporous Mater. 2001, 47, 369-388.
  • 18. Beyer, H. Post-Synthesis Modif. I. 2002, 3, 203-255.
  • 19. Sadowska, K.; Góra-Marek, K.; Drozdek, M.; Kuśtrowski, P.; Datka, J.; Martinez Triguero, J.; Rey, F. Microporous Mesoporous Mater. 2013, 168, 195-205.
  • 20. Verboekend, D.; Pérez-Ramírez, J. Chem. Eur. J. 2011, 17, 1137-1147.
  • 21. Tarach, K.; Góra-Marek, K.; Tekla, J.; Brylewska, K.; Datka, J.; Mlekodaj, K.; Makowski, W.; Igualada López, M. C.; Martínez Triguero, J.; Rey, F. J. Catal. 2014, 312, 46-57.
  • 22. Yang, Y.; Sun, C.; Du, J.; Yue, Y.; Hua, W.; Zhang, C.; Shen, W.; Xu, H. Catal. Commun. 2012, 24, 44-47.
  • 23. Xu, A.; Ma, H.; Zhang, H.; Fang, D. Polish J. Chem. Technol. 2013, 15, 95-101.
  • 24. Zhang, H.; Ning, Z.; Shang, J.; Liu, H.; Han, S.; Qu, W.; Jiang, Y.; Guo, Y. Microporous Mesoporous Mater. 2017, 248, 173-178.
  • 25. Hadi, N.; Niaei, A.; Nabavi, S. R.; Farzi, A.; Shirazi, M. N. Chem. Biochem. Eng. Q 2014, 28, 53-63.
  • 26. Rostamizadeh, M.; Taeb, A. J. Ind. Eng. Chem. 2015, 27, 297-306.
  • 27. Zhang, S.; Zhang, B.; Gao, Z.; Han, Y. React. Kinet. Mech. Catal. 2010, 99, 447-453.
  • 28. Wang, Y.; Jian, G.; Peng, Z.; Hu, J.; Wang, X.; Duan, W.; Liu, B. Catal. Commun. 2015, 66, 34-39.
  • 29. Inui, T.; Matsuda, H.; Yamase, O.; Nagata, H.; Fukuda, K.; Ukawa, T.; Miyamoto, A. J. Catal. 1986, 98, 491-501.
  • 30. Yaripour, F.; Shariatinia, Z.; Sahebdelfar, S.; Irandoukht, A. Microporous Mesoporous Mater. 2015, 203, 41-53.
  • 31. Xu, A.; Ma, H.; Zhang, H.; Ying, W.; Fang, D. Int. J. Chem. Mol. Nucl. Mater. Metall. Eng. 2013, 7, 179-184.
  • 32. Ni, Y.; Sun, A.; Wu, X.; Hai, G.; Li, T.; Li, G. J. Nat. Gas Chem. 2011, 20, 237-242.
  • 33. Ding, J.; Wang, M.; Peng, L.; Xue, N.; Wang, Y.; He, M. Appl. Catal. A Gen. 2015, 503, 147-155.
  • 34. Groen, J. C.; Peffer, L. A. A.; Moulijn, J. A.; Pérez-Ramírez, J. Chem. Eur. J. 2005, 11, 4983-4994.
  • 35. Wan, W.; Fu, T.; Qi, R.; Shao, J.; Li, Z. Ind. Eng. Chem. Res. 2016, 55, 13040-13049.
  • 36. Damjanović, L.; Auroux, A. Zeolite Chemistry and Catalysis; Springer: Dordrecht, the Netherlands, 2009.
  • 37. de Rivas, B.; Sampedro, C.; López-Fonseca, R.; Gutiérrez-Ortiz, MÁ.; Gutiérrez-Ortiz, J. I. Appl Catal A Gen. 2012, 417, 93-101.
  • 38. Chen, L.; Zhu, S. Y.; Wang, Y. M.; He, M.Y. New J. Chem. 2010, 34, 2328-2334.
  • 39. Bjørgen, M.; Joensen, F.; Spangsberg Holm, M.; Olsbye, U.; Lillerud, K. P.; Svelle, S. Appl. Catal. A Gen. 2008, 345, 43-50.
  • 40. Lee, J.; Sohn, K.; Hyeon, T. J. Am. Chem. Soc. 2001, 123, 5146-5147.
  • 41. Zhuang, J.; Ma, D.; Yang, G.; Yan, Z.; Liu, X.; Liu, X.; Han, X.; Bao, X.; Xie, P.; Liu, Z. J. Catal. 2004, 228, 234-242.
  • 42. Chen, C.; Zhang, Q.; Meng, Z.; Li, C.; Shan, H. Appl. Petrochem. Res. 2015, 5, 277-284.
  • 43. Sandoval-Díaz, L. E.; González-Amaya, J. A.; Trujillo, C. A. Microporous Mesoporous Mater. 2015, 215, 229-243.
  • 44. Gil, B.; Mokrzycki, Ł.; Sulikowski, B.; Olejniczak, Z.; Walas, S. Catal. Today 2010, 152, 24-32.
  • 45. Campbell, S. M.; Jiang, X. Z.; Howe, R. F. Microporous Mesoporous Mater. 1999, 29, 91-108.
  • 46. Yu, Q.; Meng, X.; Liu, J.; Li, C.; Cui, Q. Microporous Mesoporous Mater. 2013, 181, 192-200.
  • 47. Rostamizadeh, M.; Yaripour, F.; Hazrati, H. J. Anal. Appl. Pyrolysis 2018, 132, 1-10.
  • 48. Zhang, S.; Gong, Y.; Zhang, L.; Liu, Y.; Dou, T.; Xu, J.; Deng, F. Fuel Process. Technol. 2015, 129, 130-138.
  • 49. Van Laak, A. N. C.; Zhang, L.; Parvulescu, A. N.; Bruijnincx, P. C. A.; Weckhuysen, B. M.; De Jong, K. P.; De Jongh, P. E. Catal. Today 2011, 168, 48-56.
  • 50. Abdelsayed, V.; Shekhawat, D.; Smith, M. W. Fuel 2015, 139, 401-410.
  • 51. Krishna, K.; Seijger, G. B. F.; van den Bleek, C. M.; Makkee, M.; Calis, H. P. A. Top. Catal. 2004, 30-31, 115-121.
  • 52. Auroux, A. Molecular Sieves - Science and Technology; Springer: Berlin, Germany, 2008.
  • 53. Borry, R. W.; Kim, Y. H.; Huffsmith, A.; Rimer, J. A.; Iglesia, E. J. Phys. Chem. B 1999, 103, 5787-5796.
  • 54. Kosinov, N.; Coumans, F.; Li, G.; Uslamin, E.; Mezari, B.; Wijpkema, A.; Pidko, E.; Hemsen, E. J. Catal. 2017, 346, 125-133.
  • 55. Liu, W.; Xu, Y.; Wong, S. T.; Wang, L.; Qiu, J.; Yang, N. J. Mol. Catal. A Chem. 1997, 120, 257-265.
  • 56. Wong, S.; Ngadi, N.; Tuan Abdullah, T. A.; Inuwa, I. M. Ind. Eng. Chem. Res. 2016, 55, 2543-2555.
  • 57. Van Speybroeck, V.; De Wispelaere, K.; Van der Mynsbrugge, J.; Vandichel, M.; Hemelsoet, K.; Waroquier, M. Chem. Soc. Rev. 2014, 43, 7326-7357.
  • 58. Svelle, S.; Olsbye, U.; Joensen, F.; Bjørgen, M. J. Phys. Chem. C 2007, 111, 17981-17984.
  • 59. Wakui, K.; Satoh, K.; Sawada, G.; Shiozawa, K.; Matano, K.; Suzuki, K.; Hayakawa, T.; Yoshimura, Y.; Murata, K.; Mizukami, F. Catal. Lett. 2002, 84, 259-264.
  • 60. Okado, H.; Shoji, H.; Kawamura, K.; Kohtoku, Y.; Yamazaki, Y.; Sano, T.; Takaya, H. ChemInform 1987, 18, 25-31.
  • 61. Radu, D.; Glatze, P.; Gloter, A.; Stephan, O.; Weckhuysen, B. M.; De Groot, F. M. F. J. Phys. Chem. C 2008, 112, 12409-12416.
  • 62. Zhu, Q.; Kondo, J. N.; Ohnuma, R.; Kubota, Y.; Yamaguchi, M.; Tatsumi, T. Microporous Mesoporous Mater. 2008, 112, 153-161.
  • 63. Wen, M.; Wang, X.; Han, L.; Ding, J.; Sun, Y.; Liu, Y.; Lu, Y. Microporous Mesoporous Mater. 2015, 206, 8-16.
  • 64. Zhang, J.; Zhang, H.; Yang, X.; Huang, Z.; Cao, W. J. Nat. Gas Chem. 2011, 20, 266-270.
  • 65. Mole, T.; Whiteside, J. A. J. Catal. 1982, 75, 284-290.
  • 66. Wang, Y.; Yuan, F. J. Ind. Eng. Chem. 2014, 20, 1016-1021.
  • 67. Rahmani, M.; Taghizadeh, M. React. Kinet. Mech. Catal. 2017, 122, 409-432.
  • 68. ASTM International. ASTM Standard Test Method D5758-01. ASTM: West Conshohocken, PA, USA, 2011.