Preparation of different thin film catalysts by direct current magnetron sputtering for hydrogen generation

In this study, thin films of Co, Ni, Pd, and Pt were prepared on Co3O4 support material in pellet form using the direct current (DC) magnetron sputtering method for use as catalysts for hydrogen generation from NaBH4.Characterization of the catalysts was carried out using X-ray diffraction (XRD), scanning electronic microscopy (SEM), and X-ray photoelectron spectroscopy (XPS). According to cross-sectional SEM images, catalyst thicknesses were observed in the range of approximately 115.3-495.8 nm. The particle sizes were approximately 25.0, 21.4, 33.9, and 9.5 nm for Ni-Co3O4, Co-Co3O4, Pd-Co3O4, and Pt-Co3O4 catalysts, respectively. The increase in NaOH initial concentration provides an increase in the rate of hydrogen generation for Co, Ni, and Pd catalysts. A maximum hydrogen generation rate of 1653 mL/g(cat).min was obtained for the Pt-Co3O4 catalyst.

___

  • Benaissi K, 2010, GREEN CHEM, V12, P220, DOI 10.1039/b913218j
  • Bozkurt G, 2019, ENERGY, V180, P702, DOI 10.1016/j.energy.2019.04.196
  • Bozkurt G, 2018, INT J HYDROGEN ENERG, V43, P22205, DOI 10.1016/j.ijhydene.2018.10.106
  • Cai HK, 2016, FUEL, V166, P297, DOI 10.1016/j.fuel.2015.11.011
  • Chen Y, 2008, FUEL PROCESS TECHNOL, V89, P966, DOI 10.1016/j.fuproc.2008.04.005
  • Chen YB, 2015, FUEL, V140, P685, DOI 10.1016/j.fuel.2014.10.022
  • Chen YB, 2011, FUEL PROCESS TECHNOL, V92, P1368, DOI 10.1016/j.fuproc.2011.02.019
  • Cho KW, 2007, CATAL TODAY, V120, P298, DOI 10.1016/j.cattod.2006.09.004
  • Guizard C, 2009, CATAL TODAY, V146, P367, DOI 10.1016/j.cattod.2009.05.012
  • Guo YP, 2013, APPL SURF SCI, V273, P253, DOI 10.1016/j.apsusc.2013.02.025
  • Guo YP, 2012, INT J HYDROGEN ENERG, V37, P1577, DOI 10.1016/j.ijhydene.2011.10.019
  • Huang ZM, 2013, INT J ENERG RES, V37, P1187, DOI 10.1002/er.2937
  • Inokawa H, 2016, INT J ENERG RES, V40, P2078, DOI 10.1002/er.3582
  • Krishnan P, 2009, APPL CATAL B-ENVIRON, V86, P137, DOI 10.1016/j.apcatb.2008.08.005
  • Kuang M, 2015, NANOTECHNOLOGY, V26, DOI 10.1088/0957-4484/26/30/304002
  • Li H, 2013, J POWER SOURCES, V239, P277, DOI 10.1016/j.jpowsour.2013.03.167
  • Liang JY, 2008, INT J HYDROGEN ENERG, V33, P4048, DOI 10.1016/j.ijhydene.2008.05.082
  • Paladini M, 2014, APPL CATAL B-ENVIRON, V158, P400, DOI 10.1016/j.apcatb.2014.04.047
  • Pana O, 2013, J ALLOY COMPD, V574, P477, DOI 10.1016/j.jallcom.2013.05.153
  • Patel N, 2007, APPL CATAL A-GEN, V323, P18, DOI 10.1016/j.apcata.2007.01.053
  • Patel N, 2010, THIN SOLID FILMS, V518, P4779, DOI 10.1016/j.tsf.2010.01.029
  • Patterson AL, 1939, PHYS REV, V56, P978, DOI 10.1103/PhysRev.56.978
  • Rakap M, 2011, J ALLOY COMPD, V509, P7016, DOI 10.1016/j.jallcom.2011.04.023
  • Sahin O, 2010, INT J ENERG RES, V34, P557, DOI 10.1002/er.1563
  • Sahiner N, 2015, FUEL PROCESS TECHNOL, V132, P1, DOI 10.1016/j.fuproc.2014.12.008
  • Smith EF, 2005, CHEM COMMUN, P5633, DOI 10.1039/b512311a
  • Wang J, 2017, MATER RES BULL, V95, P204, DOI 10.1016/j.materresbull.2017.07.039
  • Wang XN, 2015, CATAL COMMUN, V67, P45, DOI 10.1016/j.catcom.2015.03.026
  • Wang Y, 2016, RENEW ENERG, V89, P285, DOI 10.1016/j.renene.2015.12.026
  • Wasa K., 1992, HDB SPUTTER DEPOSITI .
  • Yoon C, 2009, CURR APPL PHYS, V9, pS237, DOI 10.1016/j.cap.2008.12.018
  • Zabielaite A, 2018, INT J HYDROGEN ENERG, V43, P23310, DOI 10.1016/j.ijhydene.2018.10.179
  • Zhang XY, 2019, APPL SURF SCI, V469, P764, DOI 10.1016/j.apsusc.2018.11.094