Preparation, characterization, and binding profile of imprinted semi-IPN cryogel composite for aluminum

Preparation, characterization, and binding profile of imprinted semi-IPN cryogel composite for aluminum

Human body is greatly exposed to aluminum due to its high abundance in the environment. This nonessential metal is a threat to the patients of chronic renal disorders, as it is easily retained in their plasma and quickly accumulates in different tissues. Thus, there is great need to remove it from the aqueous environment. In this study, $Al^{3+}$ imprinted semiinterpenetrating polymer network (semi-IPN)-based cryogel composite was prepared and applied for the purification of environmental and drinking water samples from aluminum. Poly (2-hydroxyethyl methacrylate) (pHEMA) discs were produced via cryogenic treatment and imprinted semi-IPN was introduced to the 3-(trimethoxysilyl) propyl acrylatemodified macroporous cryogel discs. The adsorption properties and selectivity of the aluminum (III) imprinted semi-IPN cryogel composite were studied in detail. The imprinted semi-IPN cryogel composite showed good selectivity towards aluminum (III) ions with the imprinting factor (IF) of 76.4 in the presence of competing copper (II), nickle (II), and iron (III) ions. The maximum adsorption capacity of 271 $µmol g^{−1}$ was obtained for aluminum (III) at pH 7.0 within 10 min using imprinted semi-IPN cryogel composite. The good selectivity and reusability of aluminum (III)-imprinted semi-IPN cryogel composite makes this material an eligible candidate for the purification of drinking water from aluminum (III) leaving important minerals remained in the water

___

  • 1. Plieva FM, Kirsebom H, Mattiasson B. Preparation of macroporous cryostructurated gel monoliths, their characterization and main applications. Journal of Separation Science 2011; 34 (16-17): 2164-2172. doi: 10.1002/jssc.201100199
  • 2. Suresh Kumar P, Flores RQ, Sjöstedt C, Önnby L. Arsenic adsorption by iron–aluminium hydroxide coated onto macroporous supports: Insights from X-ray absorption spectroscopy and comparison with granular ferric hydroxides. Journal of Hazardous Materials 2016; 302: 166-174. doi: 10.1016/j.jhazmat.2015.09.065
  • 3. Petrov P, Petrova E, Tsvetanov CB. UV-assisted synthesis of super-macroporous polymer hydrogels. Polymer 2009; 50 (5): 1118-1123. doi: 10.1016/j.polymer.2008.12.039
  • 4. De France K, Xu F, Hoare T. Structured Macroporous Hydrogels: Progress, Challenges, and Opportunities. Advanced Healthcare Materials 2017; 7 (1): 1-17. doi: 10.1002/adhm.201700927
  • 5. Stachowiak AN, Bershteyn A, Tzatzalos E, Irvine DJ. Bioactive hydrogels with an ordered cellular structure combine interconnected macroporosity and robust mechanical properties. Advanced Materials 2005; 17 (4): 399- 403. doi: 10.1002/adma.200400507
  • 6. Lozinsky VI, Galaev IY, Plieva FM, Savina IN, Jungvid H et al. Polymeric cryogels as promising materials of biotechnological interest. Trends in Biotechnology 2003; 21 (10): 445-451. doi: 10.1016/j.tibtech.2003.08.002
  • 7. Svec F. Porous polymer monoliths: Amazingly wide variety of techniques enabling their preparation. Journal of Chromatography A 2010; 1217 (6): 902-924. doi: 10.1016/j.chroma.2009.09.073
  • 8. Lozinsky VI, Plieva FM, Galaev IY, Mattiasson B. The potential of polymeric cryogels in bioseparation. Bioseparation 2001; 10 (4): 163-188. doi: 10.1023/a:1016386902611
  • 9. Plieva FM, Karlsson M, Aguilar MR, Gomez D, Mikhalovsky S et al. Pore structure in supermacroporous polyacrylamide based cryogels. Soft Matter 2005; 1 (4): 303-309. doi: 10.1039/b510010k
  • 10. Andaç M, Denizli A. Affinity-recognition-based polymeric cryogels for protein depletion studies. RSC Advances 2014; 4 (59): 31130-31141. doi: 10.1039/c4ra02655a
  • 11. Sahiner N, Seven F. Energy and environmental usage of super porous poly(2-acrylamido-2-methyl-1-propan sulfonic acid) cryogel support. RSC Advances 2014; 4 (45): 23886-23897. doi: 10.1039/c4ra01386g
  • 12. Bergmann NM, Peppas NA. Molecularly imprinted polymers with specific recognition for macromolecules and proteins. Progress in Polymer Science 2008; 33 (3): 271-288. doi: 10.1016/j.progpolymsci.2007.09.004
  • 13. Li S, Pilla S, Gong S. Modulated molecular recognition by a temperature-sensitive molecularly-imprinted polymer. Journal of Polymer Science- Part A Polymer Chemistry 2009; 47 (9): 2352-2360. doi: 10.1002/pola.23325
  • 14. Daniel S, Prabhakara Rao P, Prasada Rao T. Investigation of different polymerization methods on the analytical performance of palladium(II) ion imprinted polymer materials. Analytica Chimica Acta 2005; 536 (1-2): 197-206. doi: 10.1016/j.aca.2004.12.052
  • 15. Bereli N, Ertürk G, Tümer MA, Say R, Denizli A. Oriented immobilized anti-hIgG via Fc fragment-imprinted PHEMA cryogel for IgG purification. Biomedical Chromatography 2013; 27: 599-607. doi: 10.1002/bmc.2833
  • 16. Bereli N, Andaç M, Baydemir G, Say R, Galaev IY et al. Protein recognition via ion-coordinated molecularly imprinted supermacroporous cryogels. Journal of Chromatography A 2008; 1190 (1-2): 18-26. doi: 10.1016/j.chroma.2008.02.110
  • 17. Le Noir M, Plieva F, Hey T, Guieysse B, Mattiasson B. Macroporous molecularly imprinted polymer/cryogel composite systems for the removal of endocrine disrupting trace contaminants. Journal of Chromatography A 2007; 1154 (1-2): 158-164. doi: 10.1016/j.chroma.2007.03.064
  • 18. Türkmen D, Bereli N, Derazshamshir A, Perçin I, Shaikh H et al. Megaporous poly(hydroxy ethylmethacrylate) based poly(glycidylmethacrylate-N-methacryloly-(l)-tryptophan) embedded composite cryogel. Colloids and Surfaces B: Biointerfaces 2015; 130: 61-68. doi: 10.1016/j.colsurfb.2015.04.004
  • 19. Baydemir G, Bereli N, Andaç M, Say R, Galaev IY et al. Supermacroporous poly(hydroxyethyl methacrylate) based cryogel with embedded bilirubin imprinted particles. Reactive and Functional Polymers 2009; 69 (1): 36-42. doi: 10.1016/j.reactfunctpolym.2008.10.007
  • 20. Sahiner N, Yildiz S, Sahiner M, Issa ZA, Al-Lohedan H. Macroporous cryogel metal nanoparticle composites for H2 generation from NaBH4 hydrolysis in seawater. Applied Surface Science 2015; 354: 388-396. doi: 10.1016/j.apsusc.2015.04.183
  • 21. Dragan ES, Cocarta AI, Gierszewska M. Designing novel macroporous composite hydrogels based on methacrylic acid copolymers and chitosan and in vitro assessment of lysozyme controlled delivery. Colloids and Surfaces B: Biointerfaces 2016; 139: 33-41. doi: 10.1016/j.colsurfb.2015.12.011
  • 22. Berrebi M, Fabre-Francke I, Lavédrine B, Fichet O. Development of organic glass using Interpenetrating Polymer Networks with enhanced resistance towards scratches and solvents. European Polymer Journal 2015; 63: 132-140. doi: 10.1016/j.eurpolymj.2014.12.010
  • 23. Tsumura M, Ando K, Kotani J, Hiraishi M, Iwahara T. Silicon-Based Interpenetrating Polymer Networks (IPNs): Synthesis and Properties. Macromolecules 1998; 31 (9): 2716-2723. doi: 10.1021/ma971308m
  • 24. Chang Y, Chen S, Yu Q, Zhang Z, Bernards M et al. Development of biocompatible interpenetrating polymer networks containing a sulfobetaine-based polymer and a segmented polyurethane for protein resistance. Biomacromolecules 2007; 8 (1): 122-127. doi: 10.1021/bm060739m
  • 25. Cui L, Jia J, Guo Y, Liu Y, Zhu P. Preparation and characterization of IPN hydrogels composed of chitosan and gelatin cross-linked by genipin. Carbohydrate Polymers 2014; 99: 31-38. doi: 10.1016/j.carbpol.2013.08.048
  • 26. Babu VR, Hosamani KM, Aminabhavi TM. Preparation and in-vitro release of chlorothiazide novel pH-sensitive chitosan-N,N’-dimethylacrylamide semi-interpenetrating network microspheres. Carbohydrate Polymers 2008; 71 (2): 208-217. doi: 10.1016/j.carbpol.2007.05.039
  • 27. Mishra S, Bajpai R, Katare R, Bajpai AK. Preparation, characterization and microhardness study of semi interpenetrating polymer networks of polyvinyl alcohol and crosslinked polyacrylamide. Journal of Materials Science: Materials in Medicine 2006; 17 (12): 1305-1313. doi: 10.1007/s10856-006-0605-9
  • 28. Karada E, Kundakci S, Ozum OB. Investigation of swelling/sorption characteristics of highly swollen AAm/AMPS hydrogels and semi IPNs with PEG as biopotential sorbent. Journal of Encapsulation and Adsorption Sciences 2011; 1 (1): 7-22. doi: 10.4236/jeas.2011.11002
  • 29. Dragan ES, Apopei Loghin DF. Enhanced sorption of methylene blue from aqueous solutions by semi-IPN composite cryogels with anionically modified potato starch entrapped in PAAm matrix. Chemical Engineering Journal 2013; 234: 211-222. doi: 10.1016/j.cej.2013.08.081
  • 30. Yue M, Li H, He S, Zhang H, Zhang H. Efficient one-pot synthesis of water-compatible and photoresponsive molecularly imprinted polymer nanoparticles by facile RAFT precipitation polymerization. Journal of Polymer Science- Part A Polymer Chemistry 2014; 52 (14): 1941-1952. doi: 10.1002/pola.27213
  • 31. Dragan ES, Apopei DF. Multiresponsive macroporous semi-IPN composite hydrogels based on native or anionically modified potato starch. Carbohydrate Polymers 2013; 92 (1): 23-32. doi: 10.1016/j.carbpol.2012.08.082
  • 32. Shaikh H, Andac M, Memon N, Bhanger MI, Nizamani SM et al. Synthesis and characterization of molecularly imprinted polymer embedded composite cryogel discs: application for the selective extraction of cypermethrins from aqueous samples prior to GC-MS analysis. RSC Advances 2015; 5 (34): 26604-26615. doi: 10.1039/c4ra13318h
  • 33. Denizli A, Kavakli C, Pişkin E. Dye-incorporated poly(EGDMA-HEMA) microspheres as specific sorbents for aluminum removal. Journal of Chromatography B: Biomedical Sciences and Applications 1997; 698 (1-2): 89-96. doi: 10.1016/S0378-4347(97)00306-X
  • 34. Denizli A, Say R, Pişkin E. Removal of aluminium by Alizarin Yellow-attached magnetic poly(2-hydroxyethyl methacrylate) beads. Reactive and Functional Polymers 2003; 55 (1): 99-107. doi: 10.1016/S1381-5148(02)00219-5
  • 35. Rodil E, Dumortier R, Vera JH. Removal of aluminum from aqueous solutions using sodium di-(n-octyl) phosphinate. Chemical Engineering Journal 2004; 97 (2-3): 225-232. doi: 10.1016/S1385-8947(03)00213-4
  • 36. Al-Muhtaseb SA, El-Naas MH, Abdallah S. Removal of aluminum from aqueous solutions by adsorption on date-pit and BDH activated carbons. Journal of Hazardous Materials 2008; 158 (2-3): 300-307. doi: 10.1016/j.jhazmat.2008.01.080
  • 37. Savina IN, Ingavle GC, Cundy AB, Mikhalovsky SV. A simple method for the production of large volume 3D macroporous hydrogels for advanced biotechnological, medical and environmental applications. Scientific Reports 2016; 6 (1): 1-9. doi: 10.1038/srep21154
  • 38. Okay O. Polymeric Cryogels: Macroporous Gels with Remarkable Properties. Switzerland: Springer, 2014.
  • 39. Butler JN. Ionic Equilibrium: Solubility and pH Calculations. Weinheim, Germany: Wiley, 1998.
  • 40. Akar ST, Gorgulu A, Anilan B, Kaynak Z, Akar T. Investigation of the biosorption characteristics of lead(II) ions onto Symphoricarpus albus: Batch and dynamic flow studies. Journal of Hazardous Materials 2009; 165 (1-3): 126-133. doi: 10.1016/j.jhazmat.2008.09.089
  • 41. Abdullah AM. Aluminum pollution removal from water using a natural zeolite. Journal of Pollution Effects & Control 2014; 2 (2): 1-4. doi: 10.4172/2375-4397.1000120
  • 42. Kumari AA, Ravindhranath K. Removal of aluminium (III) from waste waters using bio-sorbents pertaining to Withania somnifera plant. Der Pharmacia Lettre 2016; 8 (8): 204-220.
  • 43. Kumari AA, Ravindhranath K. Removal of Aluminium (III) from polluted waters using biosorbents derived from Achiranthus Aspera and Cassia Occidentalis. International Journal of Water Resources and Environmental Sciences 2012; 1 (1): 8-19. doi: 10.5829/idosi.ijwres.2012.1.1.1101
  • 44. Abdel-Ghani N, El-Chaghaby G, Zahran EM. Cost effective adsorption of aluminium and iron from synthetic and real wastewater by rice hull activated carbon (RHAC). American Journal of Analytical Chemistry 2015; 6: 71-83. doi: 10.4236/ajac.2015.61007
  • 45. Yavuz H, Say R, Denizli A. Iron removal from human plasma based on molecular recognition using imprinted beads. Materials Science and Engineering: C 2005; 25 (4): 521-528. doi: 10.1016/j.msec.2005.04.005
  • 46. Cheung CW, Porter JF, McKay G. Sorption kinetic analysis for the removal of cadmium ions from effluents using bone char. Water Research 2001; 35 (3): 605-612. doi: 10.1016/S0043-1354(00)00306-7
  • 47. Bayramoglu G, Altintas B, Arica MY. Adsorption kinetics and thermodynamic parameters of cationic dyes from aqueous solutions by using a new strong cation-exchange resin. Chemical Engineering Journal 2009; 152 (2-3): 339-346. doi: 10.1016/j.cej.2009.04.051
  • 48. Ho YS. Review of second-order models for adsorption systems. Journal of Hazardous Materials 2006; 136 (3): 681-689. doi: 10.1016/j.jhazmat.2005.12.043
  • 49. Andaç M, ÖzyapıE, Şenel S, Say R, Denizli A. Ion-selective imprinted beads for aluminum removal from aqueous solutions. Industrial & Engineering Chemistry Research 2006; 45 (5): 1780-1786. doi: 10.1021/ie0512338
  • 50. Umpleby RJ, Baxter SC, Chen Y, Shah RN, Shimizu KD. Characterization of molecularly imprinted polymers with the Langmuir-Freundlich isotherm. Analytical Chemistry 2001; 73 (19): 4584-4591. doi: 10.1021/ac0105686
  • 51. Vigneau O, Pinel C, Lemaire M. Solid-liquid separation of Lanthanide/Lanthanide and Lanthanide/Actinide using ionic imprinted polymer based on a DTPA derivative. Chemistry Letters 2002; 31 (2): 202-203. doi: 10.1246/cl.2002.202
  • 52. Fish RH. Metal Ion templated polymers, molecular and ionic recognition with imprinted polymers. American Chemical Society 1998; 703: 238-250. doi: 10.1021/bk-1998-0703.ch016
  • 53. Goher ME, Hassan AM, Abdel-Moniem IA, Fahmy AH, Abdo MH et al. Removal of aluminum, iron and manganese ions from industrial wastes using granular activated carbon and Amberlite IR-120H. The Egyptian Journal of Aquatic Research 2015; 41 (2): 155-164. doi: 10.1016/j.ejar.2015.04.002
  • 54. Ghazy SE, Samra SE, Mahdy AEM, El-Morsy SM. Removal of aluminum from some water samples by sorptiveflotation using powdered modified activated carbon as a sorbent and oleic acid as a surfactant. Analytical Sciences 2006; 22 (3): 377-382. doi: 10.2116/analsci.22.377
  • 55. SarıA, Tuzen M. Equilibrium, thermodynamic and kinetic studies on aluminum biosorption from aqueous solution by brown algae (Padina pavonica) biomass. Journal of Hazardous Materials 2009; 171 (1–3): 973-979. doi: 10.1016/j.jhazmat.2009.06.101